This repository has been archived by the owner on Feb 11, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 73
/
streamlit-app.py
82 lines (67 loc) · 2.84 KB
/
streamlit-app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
"""
Simple StreamLit app for unsupervised segmentation
>> streamlit run streamlit-app.py
"""
import matplotlib.pyplot as plt
import streamlit as st
from skimage import segmentation as ski_segm
from imsegm.pipelines import estim_model_classes_group, segment_color2d_slic_features_model_graphcut
FEATURES_SET_MIN = {
'color': (
'mean',
'std',
# 'energy',
),
'tLM_short': ('mean', ),
}
def process_image(
img_path: str = 'data-images/drosophila_disc/image/img_5.jpg',
nb_classes: int = 2,
spx_size: int = 30,
spx_regul: float = 0.5,
gc_regul: float = 0.4,
streamlit_app: bool = False,
):
if not img_path:
return
st.write('loading image...')
img = plt.imread(img_path)
# if streamlit_app:
# st.image(img)
debug = {}
spx_config = dict(sp_size=spx_size, sp_regul=spx_regul, dict_features=FEATURES_SET_MIN)
st.write('estimating model...')
model, _ = estim_model_classes_group([img], nb_classes=nb_classes, **spx_config)
st.write('performing GC segmentation...')
segm, _ = segment_color2d_slic_features_model_graphcut(
img, model, **spx_config, gc_regul=gc_regul, debug_visual=debug
)
print(debug.keys())
spx_contour = ski_segm.mark_boundaries(debug['image'], debug['slic'], color=(1, 0, 0), mode='subpixel')
st.write('preparing visualization...')
fig, axarr = plt.subplots(ncols=3, nrows=2, figsize=(18, 12), tight_layout=True)
axarr[0, 0].set_title("Original image")
axarr[0, 0].imshow(debug['image'])
axarr[0, 1].set_title("Superpixel contours")
axarr[0, 1].imshow(spx_contour)
axarr[0, 2].set_title("Image represented by superpixel colour means")
axarr[0, 2].imshow(debug['slic_mean'] / 255.)
axarr[1, 0].set_title("Graph edges with colour importance")
axarr[1, 0].imshow(debug['img_graph_edges'])
axarr[1, 1].set_title("Segmentation graph")
axarr[1, 1].imshow(debug['img_graph_segm'])
axarr[1, 2].set_title("Output segmentation")
axarr[1, 2].imshow(segm)
if streamlit_app:
st.pyplot(fig)
st.set_option('deprecation.showfileUploaderEncoding', False)
# Upload an image and set some options for demo purposes
st.header("Image segmentation Demo")
nb_cls = st.sidebar.slider('number classes', min_value=2, max_value=10, value=3, step=1)
sz_spx = st.sidebar.slider('SuperPixel edge size [px]', min_value=5, max_value=200, value=35, step=10)
reg_spx = st.sidebar.slider('SuperPixel regularization', min_value=0.1, max_value=1.0, value=0.4, step=0.05)
reg_gc = st.sidebar.slider('GraphCut regularization', min_value=0.1, max_value=20., value=0.7, step=0.05)
img_file = st.sidebar.file_uploader(label='Upload an image', type=['png', 'jpg'])
# run the app
process_image(img_file, nb_classes=nb_cls, spx_size=sz_spx, spx_regul=reg_spx, streamlit_app=True)
# process_image(model) # dry rn with locals