-
Notifications
You must be signed in to change notification settings - Fork 343
/
example_multi_image.py
46 lines (41 loc) · 1.71 KB
/
example_multi_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
# os.environ['ATTN_BACKEND'] = 'xformers' # Can be 'flash-attn' or 'xformers', default is 'flash-attn'
os.environ['SPCONV_ALGO'] = 'native' # Can be 'native' or 'auto', default is 'auto'.
# 'auto' is faster but will do benchmarking at the beginning.
# Recommended to set to 'native' if run only once.
import numpy as np
import imageio
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.utils import render_utils
# Load a pipeline from a model folder or a Hugging Face model hub.
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
pipeline.cuda()
# Load an image
images = [
Image.open("assets/example_multi_image/character_1.png"),
Image.open("assets/example_multi_image/character_2.png"),
Image.open("assets/example_multi_image/character_3.png"),
]
# Run the pipeline
outputs = pipeline.run_multi_image(
images,
seed=1,
# Optional parameters
sparse_structure_sampler_params={
"steps": 12,
"cfg_strength": 7.5,
},
slat_sampler_params={
"steps": 12,
"cfg_strength": 3,
},
)
# outputs is a dictionary containing generated 3D assets in different formats:
# - outputs['gaussian']: a list of 3D Gaussians
# - outputs['radiance_field']: a list of radiance fields
# - outputs['mesh']: a list of meshes
video_gs = render_utils.render_video(outputs['gaussian'][0])['color']
video_mesh = render_utils.render_video(outputs['mesh'][0])['normal']
video = [np.concatenate([frame_gs, frame_mesh], axis=1) for frame_gs, frame_mesh in zip(video_gs, video_mesh)]
imageio.mimsave("sample_multi.mp4", video, fps=30)