Skip to content
This repository has been archived by the owner on Oct 8, 2022. It is now read-only.

Latest commit

 

History

History
102 lines (71 loc) · 4.06 KB

README.md

File metadata and controls

102 lines (71 loc) · 4.06 KB

Watasense

Watasense is a framework for unsupervised word sense disambiguation (WSD). It includes three components:

  • a Python library for WSD;
  • a Web service for WSD;
  • an evaluation framework.

Docker Hub

Features

Watasense implements two unsupervised WSD approaches:

  • sparse: a vector space model approach that relies on cosine similarity;
  • dense: a sense embeddings approach that based on SenseGram.

Currently, Watasense supports only the Russian language and the Mystem tagger. Contributions are warmly welcome!

Python Library

The sparse approach is the simplest.

from mnogoznal import Inventory, SparseWSD, mystem

inventory = Inventory('….tsv')
wsd = SparseWSD(inventory)

sentences = mystem('Статья содержит описание экспериментов.')

for sentence in sentences:
    for (word, lemma, pos, _), id in wsd.disambiguate(sentence).items():
        print((word, lemma, pos, id))
('Статья', 'статья', 'S', '12641')
('содержит', 'содержать', 'V', '3240')
('описание', 'описание', 'S', '24626')
('экспериментов', 'эксперимент', 'S', '36055')
('.', '.', 'UNKNOWN', None)

To use the dense approach, it is necessary to load the word vectors using Gensim. The rest of the code is identical.

from gensim.models import KeyedVectors
wv = KeyedVectors.load_word2vec_format('….w2v', binary=True, unicode_errors='ignore')
wv.init_sims(replace=True)

wsd = DenseWSD(inventory, wv)

It is also possible and highly convenient to use the remote word vectors served by word2vec-pyro4 instead of the Gensim ones.

from mnogoznal.pyro_vectors import PyroVectors as PyroVectors
wv = PyroVectors('PYRO:w2v@…:9090')

wsd = DenseWSD(inventory, wv)

Web Service

INVENTORY=….tsv W2V_PATH=….w2v FLASK_APP=mnogoznal_web.py flask run or INVENTORY=….tsv W2V_PYRO=PYRO:w2v@…:9090 FLASK_APP=mnogoznal_web.py flask run

Also, it is possible to run the Web service directly from Docker Hub:

docker run --rm -p 5000:5000 -e INVENTORY=….tsv -v ….tsv:/usr/src/app/….tsv:ro

Evaluation Framework

  1. make -C data watlink
  2. make -C eval gold instances baseline
  3. cd eval && INVENTORY=….tsv W2V_PYRO=PYRO:w2v@…:9090 ./semeval.sh

Citation

@inproceedings{Ustalov:18:lrec,
  author    = {Ustalov, D. and Teslenko, D. and Panchenko, A. and Chernoskutov, M. and Biemann, C. and Ponzetto, S. P.},
  title     = {{An Unsupervised Word Sense Disambiguation System for Under-Resourced Languages}},
  booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC~2018)},
  year      = {2018},
  pages     = {1018--1022},
  address   = {Miyazaki, Japan},
  publisher = {European Language Resources Association (ELRA)},
  url       = {http://www.lrec-conf.org/proceedings/lrec2018/summaries/182.html},
  language  = {english},
}

Copyright

This repository contains the implementation of Watasense. See LICENSE for details.