-
-
Notifications
You must be signed in to change notification settings - Fork 61
/
tabcontents.yaml
295 lines (282 loc) · 13.6 KB
/
tabcontents.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
params:
machinelearning:
paras:
- para1: NumPy forms the basis of powerful machine learning libraries like [scikit-learn](https://scikit-learn.org) and [SciPy](https://www.scipy.org). As machine learning grows, so does the list of libraries built on NumPy. [TensorFlow’s](https://www.tensorflow.org) deep learning capabilities have broad applications — among them speech and image recognition, text-based applications, time-series analysis, and video detection. [PyTorch](https://pytorch.org), another deep learning library, is popular among researchers in computer vision and natural language processing.
para2: Statistical techniques called [ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205) methods such as binning, bagging, stacking, and boosting are among the ML algorithms implemented by tools such as [XGBoost](https://xgboost.readthedocs.io/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [CatBoost](https://catboost.ai) — one of the fastest inference engines. [Yellowbrick](https://www.scikit-yb.org/en/latest/) and [Eli5](https://eli5.readthedocs.io/en/latest/) offer machine learning visualizations.
arraylibraries:
intro:
- text: NumPy's API is the starting point when libraries are written to exploit innovative hardware, create specialized array types, or add capabilities beyond what NumPy provides.
headers:
- text: Array Library
- text: Capabilities & Application areas
libraries:
- title: Dask
text: Distributed arrays and advanced parallelism for analytics, enabling performance at scale.
img: /images/content_images/arlib/dask.png
alttext: Dask
url: https://dask.org/
- title: CuPy
text: NumPy-compatible array library for GPU-accelerated computing with Python.
img: /images/content_images/arlib/cupy.png
alttext: CuPy
url: https://cupy.dev
- title: JAX
text: "Composable transformations of NumPy programs: differentiate, vectorize, just-in-time compilation to GPU/TPU."
img: /images/content_images/arlib/jax_logo_250px.png
alttext: JAX
url: https://jax.readthedocs.io/
- title: Xarray
text: Labeled, indexed multi-dimensional arrays for advanced analytics and visualization.
img: /images/content_images/arlib/xarray.png
alttext: xarray
url: https://xarray.pydata.org/en/stable/index.html
- title: Sparse
text: NumPy-compatible sparse array library that integrates with Dask and SciPy's sparse linear algebra.
img: /images/content_images/arlib/sparse.png
alttext: sparse
url: https://sparse.pydata.org/en/latest/
- title: PyTorch
text: Deep learning framework that accelerates the path from research prototyping to production deployment.
img: /images/content_images/arlib/pytorch-logo-dark.svg
alttext: PyTorch
url: https://pytorch.org/
- title: TensorFlow
text: An end-to-end platform for machine learning to easily build and deploy ML powered applications.
img: /images/content_images/arlib/tensorflow-logo.svg
alttext: TensorFlow
url: https://www.tensorflow.org
- title: Arrow
text: A cross-language development platform for columnar in-memory data and analytics.
img: /images/content_images/arlib/arrow.png
alttext: arrow
url: https://arrow.apache.org/
- title: xtensor
text: Multi-dimensional arrays with broadcasting and lazy computing for numerical analysis.
img: /images/content_images/arlib/xtensor.png
alttext: xtensor
url: https://github.com/xtensor-stack/xtensor-python
- title: Awkward Array
text: Manipulate JSON-like data with NumPy-like idioms.
img: /images/content_images/arlib/awkward.svg
alttext: awkward
url: https://awkward-array.org/
- title: uarray
text: Python backend system that decouples API from implementation; unumpy provides a NumPy API.
img: /images/content_images/arlib/uarray.png
alttext: uarray
url: https://uarray.org/en/latest/
- title: tensorly
text: Tensor learning, algebra and backends to seamlessly use NumPy, PyTorch, TensorFlow or CuPy.
img: /images/content_images/arlib/tensorly.png
alttext: tensorly
url: http://tensorly.org/stable/home.html
scientificdomains:
intro:
- text: Nearly every scientist working in Python draws on the power of NumPy.
- text: "NumPy brings the computational power of languages like C and Fortran to Python, a language much easier to learn and use. With this power comes simplicity: a solution in NumPy is often clear and elegant."
libraries:
- title: Quantum Computing
alttext: A computer chip.
img: /images/content_images/sc_dom_img/quantum_computing.svg
links:
- url: http://qutip.org
label: QuTiP
- url: https://pyquil-docs.rigetti.com/en/stable
label: PyQuil
- url: https://qiskit.org
label: Qiskit
- url: https://pennylane.ai
label: PennyLane
- title: Statistical Computing
alttext: A line graph with the line moving up.
img: /images/content_images/sc_dom_img/statistical_computing.svg
links:
- url: https://pandas.pydata.org/
label: Pandas
- url: https://www.statsmodels.org/
label: statsmodels
- url: https://xarray.pydata.org/en/stable/
label: Xarray
- url: https://seaborn.pydata.org/
label: Seaborn
- title: Signal Processing
alttext: A bar chart with positive and negative values.
img: /images/content_images/sc_dom_img/signal_processing.svg
links:
- url: https://www.scipy.org/
label: SciPy
- url: https://pywavelets.readthedocs.io/
label: PyWavelets
- url: https://python-control.org/
label: python-control
- url: https://hyperspy.org/
label: HyperSpy
- title: Image Processing
alttext: An photograph of the mountains.
img: /images/content_images/sc_dom_img/image_processing.svg
links:
- url: https://scikit-image.org/
label: Scikit-image
- url: https://opencv.org/
label: OpenCV
- url: https://mahotas.rtfd.io/
label: Mahotas
- title: Graphs and Networks
alttext: A simple graph.
img: /images/content_images/sc_dom_img/sd6.svg
links:
- url: https://networkx.org/
label: NetworkX
- url: https://graph-tool.skewed.de/
label: graph-tool
- url: https://igraph.org/python/
label: igraph
- url: https://pygsp.rtfd.io/
label: PyGSP
- title: Astronomy
alttext: A telescope.
img: /images/content_images/sc_dom_img/astronomy_processes.svg
links:
- url: https://www.astropy.org/
label: AstroPy
- url: https://sunpy.org/
label: SunPy
- url: https://spacepy.github.io/
label: SpacePy
- title: Cognitive Psychology
alttext: A human head with gears.
img: /images/content_images/sc_dom_img/cognitive_psychology.svg
links:
- url: https://www.psychopy.org/
label: PsychoPy
- title: Bioinformatics
alttext: A strand of DNA.
img: /images/content_images/sc_dom_img/bioinformatics.svg
links:
- url: https://biopython.org/
label: BioPython
- url: http://scikit-bio.org/
label: Scikit-Bio
- url: https://github.com/openvax/pyensembl
label: PyEnsembl
- url: http://etetoolkit.org/
label: ETE
- title: Bayesian Inference
alttext: A graph with a bell-shaped curve.
img: /images/content_images/sc_dom_img/bayesian_inference.svg
links:
- url: https://pystan.readthedocs.io/en/latest/
label: PyStan
- url: https://docs.pymc.io/
label: PyMC3
- url: https://arviz-devs.github.io/arviz/
label: ArviZ
- url: https://emcee.readthedocs.io/
label: emcee
- title: Mathematical Analysis
alttext: Four mathematical symbols.
img: /images/content_images/sc_dom_img/mathematical_analysis.svg
links:
- url: https://www.scipy.org/
label: SciPy
- url: https://www.sympy.org/
label: SymPy
- url: https://www.cvxpy.org/
label: cvxpy
- url: https://fenicsproject.org/
label: FEniCS
- title: Chemistry
alttext: A test tube.
img: /images/content_images/sc_dom_img/chemistry.svg
links:
- url: https://cantera.org/
label: Cantera
- url: https://www.mdanalysis.org/
label: MDAnalysis
- url: https://github.com/rdkit/rdkit
label: RDKit
- url: https://www.pybamm.org/
label: PyBaMM
- title: Geoscience
alttext: The Earth.
img: /images/content_images/sc_dom_img/geoscience.svg
links:
- url: https://pangeo.io/
label: Pangeo
- url: https://simpeg.xyz/
label: Simpeg
- url: https://github.com/obspy/obspy/wiki
label: ObsPy
- url: https://www.fatiando.org/
label: Fatiando a Terra
- title: Geographic Processing
alttext: A map.
img: /images/content_images/sc_dom_img/GIS.svg
links:
- url: https://shapely.readthedocs.io/
label: Shapely
- url: https://geopandas.org/
label: GeoPandas
- url: https://python-visualization.github.io/folium
label: Folium
- title: Architecture & Engineering
alttext: A microprocessor development board.
img: /images/content_images/sc_dom_img/robotics.svg
links:
- url: https://compas.dev/
label: COMPAS
- url: https://cityenergyanalyst.com/
label: City Energy Analyst
- url: https://nortikin.github.io/sverchok/
label: Sverchok
datascience:
intro: "NumPy lies at the core of a rich ecosystem of data science libraries. A typical exploratory data science workflow might look like:"
image1:
- img: /images/content_images/ds-landscape.png
alttext: Diagram of Python Libraries. The five catagories are 'Extract, Transform, Load', 'Data Exploration', 'Data Modeling', 'Data Evaluation' and 'Data Presentation'.
image2:
- img: /images/content_images/data-science.png
alttext: Diagram of three overlapping circles. The circles are labeled 'Mathematics', 'Computer Science' and 'Domain Expertise'. In the middle of the diagram, which has the three circles overlapping it, is an area labeled 'Data Science'.
examples:
- text: "<b>Extract, Transform, Load: </b>[Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor-devs.github.io/pyjanitor/)"
- text: "<b>Exploratory analysis: </b>[Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
- text: "<b>Model and evaluate: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC3](https://docs.pymc.io), [spaCy](https://spacy.io)"
- text: "<b>Report in a dashboard: </b>[Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://voila.readthedocs.io/)"
content:
- text: For high data volumes, [Dask](https://dask.org) and [Ray](https://ray.io/) are designed to scale. Stable deployments rely on data versioning ([DVC](https://dvc.org)), experiment tracking ([MLFlow](https://mlflow.org)), and workflow automation ([Airflow](https://airflow.apache.org), [Dagster](https://dagster.io) and [Prefect](https://www.prefect.io)).
visualization:
images:
- url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
img: /images/content_images/v_matplotlib.png
alttext: A streamplot made in matplotlib
- url: https://github.com/yhat/ggpy
img: /images/content_images/v_ggpy.png
alttext: A scatter-plot graph made in ggpy
- url: https://www.journaldev.com/19692/python-plotly-tutorial
img: /images/content_images/v_plotly.png
alttext: A box-plot made in plotly
- url: https://altair-viz.github.io/gallery/streamgraph.html
img: /images/content_images/v_altair.png
alttext: A streamgraph made in altair
- url: https://seaborn.pydata.org
img: /images/content_images/v_seaborn.png
alttext: A pairplot of two types of graph, a plot-graph and a frequency graph made in seaborn"
- url: https://docs.pyvista.org/
img: /images/content_images/v_pyvista.png
alttext: A 3D volume rendering made in PyVista.
- url: https://napari.org
img: /images/content_images/v_napari.png
alttext: A multi-dimensionan image made in napari.
- url: https://vispy.org/gallery/index.html
img: /images/content_images/v_vispy.png
alttext: A Voronoi diagram made in vispy.
content:
- text: NumPy is an essential component in the burgeoning
[Python visualization landscape](https://pyviz.org/overviews/index.html),
which includes [Matplotlib](https://matplotlib.org),
[Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly),
[Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/),
[Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://napari.org/),
and [PyVista](https://docs.pyvista.org/), to name a few.
- text: NumPy's accelerated processing of large arrays allows researchers to visualize
datasets far larger than native Python could handle.