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(a) The Event Density of “mischief” in Canada.
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(c) The Surprise Map of mischief.

Fig. 1: Choropleth maps of (a) event density, (b) per-capita event rates, and (c) Bayesian surprise for “mischief” (a class of
property crime) in Canada. Which province or territory is safest? The density of crimes (Fig. 1a) in the southern provinces suggest
that they are less safe; however, this is due to the much larger populations in those provinces. Normalizing to a per-capita rate (Fig.
1b) gives the opposite impression. A Surprise Map (Fig. 1c), using both population density and a de Moivre funnel as models,
finds the provinces that stick out: Ontario and Quebec have crime rates lower than expected given their population. The seemingly
high per-capita rates in Nunavut accord with the higher variability that can arise from a smaller population.

Abstract—Thematic maps are commonly used for visualizing the density of events in spatial data. However, these maps can mislead
by giving visual prominence to known base rates (such as population densities) or to artifacts of sample size and normalization
(such as outliers arising from smaller, and thus more variable, samples). In this work, we adapt Bayesian surprise to generate maps
that counter these biases. Bayesian surprise, which has shown promise for modeling human visual attention, weights information
with respect to how it updates beliefs over a space of models. We introduce Surprise Maps, a visualization technique that weights
event data relative to a set of spatio-temporal models. Unexpected events (those that induce large changes in belief over the model
space) are visualized more prominently than those that follow expected patterns. Using both synthetic and real-world datasets, we
demonstrate how Surprise Maps overcome some limitations of traditional event maps.

Index Terms—Thematic Maps, Bayesian Surprise, Event Visualization, Spatio-temporal data

1 INTRODUCTION

There is only limited utility in seeing the expected. In the process of
data analysis, one often seeks out outliers and oddities, places where
the data do not match our expectations. Unexpected events or patterns
of events can occur in time, space, or a combination of both. Spatial
event data is often visualized using thematic maps. However, these
maps are sensitive to both base rates and sampling error, but rarely
explicitly encode information about either. As a result, such maps
may obscure unexpected but important patterns, or mislead the viewer
into thinking an important pattern exists, when noise or sampling error
are likelier explanations.

In order to address the potential drawbacks of standard thematic
maps, we adapt a saliency technique, Bayesian surprise [24]. Bayesian
surprise relies on viewing the data relative to a model space of ex-
pected event distributions. As new data are observed, the plausibil-
ity of each of these models shifts. Formally, the most “surprising”
events are those that induce large updates in beliefs about the model
space. With even a relatively small model space (in terms of both
the number of models and the number of free parameters), visualizing
surprise, rather than just density, can make interesting spatial patterns
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more salient, and offset misleading patterns.
Consider Figure 1, which shows three different visualizations of

crime data for Canadian provinces. A standard choropleth map of
event density (Fig. 1a) largely reproduces the underlying population
density. A map of event rates (Fig. 1b) suffers from statistical noise
due to unbalanced populations across regions. If we incorporate mod-
els of population density and expected variation, we can instead vi-
sualize a measure of surprise (Fig. 1c) that quantifies how much the
actual data deviates from our expectations.

In this paper, we contribute Surprise Maps, a visualization tech-
nique for spatial event data that highlights unusual or informative spa-
tial regions. By constructing a space of initially equi-plausible mod-
els, and performing Bayesian update steps to re-estimate their plau-
sibility, Surprise Maps down-weight expected spatio-temporal events,
and boost surprising events. We apply the technique to a number of
datasets to demonstrate its utility both for correcting known deficien-
cies in traditional density maps, and for quickly summarizing impor-
tant regions of spatial and temporal data.

2 EVENT VISUALIZATION

Surprise Maps leverage existing techniques for visualizing spatially-
embedded event data, but incorporate Bayesian modeling to weight the
importance of individual events. Here we survey the related work and
outstanding issues for event data visualization. We review Bayesian
statistics and surprise measures in the following section.

Andrienko et al. [2] present a thorough summary of analytical tasks
involving event data (though see [35] for another review of event vi-
sualization techniques). Analysis tasks can be characterized as some
combination of what, when, and where: e.g., “where are most events
located?” (where) or “when do events begin to occur in this region?”



(when/where) or “when does this pattern of events, previously ob-
served, re-occur in a new region?” (what/when/where). To support
these tasks, event visualizations must, at a minimum, illustrate spatial
patterns, and, if a temporal axis is present, afford navigation or sum-
marization through time. Traditional visualizations may support only
a subset of these investigative tasks, requiring suites of related visu-
alizations; in general, there are many unmet challenges in visualizing
spatio-temporal data [14].

One approach to event visualization is to visualize individual
streams of event density [5, 26]. While streams of 1D event den-
sity data are useful, they require careful layout and sorting in order
to illustrate spatial patterns. Where both the temporal and spatial com-
ponents of the event data are important, other approaches seek to vi-
sualize the “space-time cube” [3] directly, mapping events to points in
3D space [19, 45]. For many cases, we find this approach unsatisfac-
tory; projection and occlusion issues require interaction and 3D spatial
reasoning in order to discover patterns of interest. A more common
approach is to visualize spatial events using thematic maps (for in-
stance, choropleth or heat maps), and use animation, juxtaposition, or
explicit differencing to compare temporal patterns [19] (but, see Now-
ell et al. [36] for examples where change blindness renders temporal
patterns difficult to see).

It may be infeasible to assign a discrete glyph to each event, due
to the number of events, lack of spatial resolution, or risk of overplot-
ting. There are many techniques for visualizing dense spatial data:
histograms using rectangular [17, 29] or hexagonal bins [7], kernel
density estimation (KDE) [44], and sub-sampling [8] or contour-based
techniques [31]. These maps explicitly encode spatial patterns at the
expense of individual events. The visual contribution of a single event
in a histogram or KDE map containing many prior events might be
relatively minor. These maps are also sensitive to the binning or esti-
mation techniques used. As we will discuss, these techniques can at
times produce undesirable visual artifacts as a result.

2.1 Biases in Thematic Maps
There are many sorts of patterns that are relevant when analyzing event
data in heatmaps or choropleth maps. These include identifying re-
gions of high or low event occurrence, atypical regions, and spatial
outliers. Unfortunately, standard thematic maps may not accurately
convey those types of information. For example, there are cases where
significant changes to the data do not create significant visual changes,
and also the inverse problem, where insignificant data changes create
large visual effects (Kindlmann and Scheidegger [25] refer to these
modes of visualization failure as “misleaders” and “jumblers”). In this
section, we discuss three of these problematic cases.

2.1.1 Base Rate Bias
In many cases, there are latent variables that affect the density of
events. These latent variables may confound the true variables of in-
terest. If the base rate of event occurrence is non-uniform, it becomes
difficult to compare event density maps. In heatmaps and choropleth
maps specifically, variations in the base rate may dominate the vari-
ations in event density. Population is an example of one such base
rate: many people-driven events (e.g., social media use, site traffic,
disease incidence) are highly correlated with population density. Time
is another factor: seasonal or cyclical changes in event density can
drown out other interesting signals. Figure 2 shows an example where
population is the dominant visual trend, making a potentially relevant
pattern difficult to discover.

2.1.2 Sampling Error Bias
One solution to base rate bias is to transform event frequencies into
rates (e.g., by population, by time intervals, etc.). However, consider
the case of normalizing by the population density. We can expect
sparse regions to exhibit high variability as a result of what Wainer [46]
calls “the most dangerous equation”: σx̄ =σ/

√
n. That is, the standard

error of the mean σx̄ is a function not only of the sample standard de-
viation σ , but also of the sample size n. This means that naı̈ve normal-
ization schemes (such as percentages, per-capita rates, and z-scores)

may create misleading spatial patterns: areas of significantly high or
low event density that reflect the high variability of sparse regions,
rather than a true underlying effect. Figure 3 presents an example.

2.1.3 Renormalization Bias
Lastly, as spatio-temporal events already have defined mappings us-
ing vertical and horizontal position (the spatial location of the events),
other visual variables must be employed to encode density. Color is
the most common choice, resulting in choropleth maps and heatmaps.
Therefore, there must be a mapping from density to color. Event oc-
currence is in principle unbounded (events could stack in the same
location indefinitely). Therefore, dynamic visualizations of event den-
sity may need to periodically renormalize, redefining the scale domain
as density increases. This step is visually disruptive, and can hide in-
teresting events such as outliers and low-density spatial patterns. Fig-
ure 4 shows an example of this disruption.

2.2 De-biasing Thematic Maps
Other biases exist in thematic maps. For instance, the use of color can
result in mis-estimation of area [9], or create simultaneous-contrast
effects that cause misreading of values [33]. Choice of geographic
projection, map orientation, and other unavoidable design decisions
can also distort values in maps [34]. Many of these biases have been
identified and discussed in prior work; Zhang et al. [47] describe re-
search on how designers of information visualizations can remediate
perceptual and cognitive biases as “foreign and distant.”

De-biasing is an approach that seeks to change the representation of
data in order to ameliorate the effects of a particular perceptual or cog-
nitive bias. One approach to de-biasing is to leave the general design
of the visualization unchanged, but to distort the presentation of values
to counteract a known bias. That is, a substitutive approach. For exam-
ple, in Correll et al.[13], the visual area of glyphs is adjusted to coun-
teract the confound between size and numerosity. These “beneficial
distortions” can provide decision-support for tasks where correcting
errors in judgment is more important than fidelity to data values [11].

Another approach to de-biasing is to change the design of the vi-
sualization in such a way that task-relevant but formerly implicit vari-
ables are explicitly visualized. That is, a supplemental approach. Ex-
amples of visualizations of supplemental variables to counteract biases
include expected value [23] for lottery problems, inferential distribu-
tion [12] for sample comparison tasks, or set size [39] for Bayesian
reasoning problems. Most relevant to Surprise Maps are supplemental
variables used in set visualization systems, where the “disproportion-
ality” [1] or “‘surprise” [28] of particular set intersections is explicitly
calculated and visualized, along with set cardinality. We rely on this
notion of explicit calculation of deviance from expectation, and sub-
sequent highlighting of regions where this deviance is high, to de-bias
thematic maps.

3 BAYESIAN MODELING

To counteract the biases of existing event visualization methods, we
turn to Bayesian modeling as a means to specify prior expectations
and then update those expectations in response to observed data. We
now briefly review Bayesian methods and describe Bayesian surprise.

3.1 Bayes’ Rule
In Bayesian statistics, a probability can be interpreted as a degree of
belief, or plausibility, over a space of potential outcomes (or models).
The probability distribution P(M) models our expectation of random
variable M taking on specific values. Bayes’ Rule provides a princi-
pled means to update these beliefs in the face of observed data, denoted
as random variable D. Given a prior P(M), and a conditional likeli-
hood P(D|M), Bayes’ Rule states that the posterior P(M|D)— our
updated belief in M after observing D — is proportional to the product
of the likelihood and prior:

P(M|D) ∝ P(D|M)P(M)

Application of Bayes’ Rule given some observed data distribution
D is referred to as a Bayesian update. After an update, the posterior
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Fig. 2: Choropleth maps illustrating the base rate bias. By encoding only the unweighted density of events, the base rate or population rate
of event occurrence is the dominant visual signal, making spatial comparisons difficult. These choropleth maps visualize the location of users
of two fictional software applications, A and B. The usage patterns look very similar at a glance, but that is because usage largely follows
population (a U.S. citizen is 10% likely to use either application). An interesting spatial pattern — B has twice as many users in Washington
state as A — is all but drowned out by the spatially complex, but largely task-irrelevant, signal of U.S. population density.

(a) Purple: Bottom 10% “Dangerous” counties. (b) Pink: Top 10% “Safe” counties.

Incidence (per 1,000)

0 103

(c) Rates across all counties.

Fig. 3: Choropleth maps illustrating the sampling error bias. By naı̈vely normalizing event density (for instance visualizing per-capita, rather
than raw density), latent variables can create erroneous geographic patterns. As an example, low population regions have higher variance than
high population regions. These maps encode the per-capita incidence of a fictional disease. (a) The counties with high rates of disease appear
localized in the great plains region. However, we also see that (b) the counties with the lowest rates are also mostly located in this region. In fact,
the data were generated from a Poisson process with a .1% chance of infection for each citizen, regardless of location. The apparent geographic
patterns are an artifact of (c) the high variance in counties with low population.

(a) Initial density map. (b) Adding to the mode. (c) Adding an outlier.

Fig. 4: Heatmaps illustrating renormalization bias. Incoming data may force renormalization. This readjustment step can be visually disruptive,
even though the event itself may not be. (a) A KDE map of events that are normally distributed. (b) Adding events, represented by a Gaussian
kernel, to the modal location causes a large visual change to the resulting density map (over 90% of pixels have a different color value). (c)
Adding outlier events to the upper left (arguably a more significant occurrence), only affects the pixels in the region of the outlier (6% of pixels).



probability P(M|D) can serve as our new prior. Upon subsequent ob-
servation of new data, we can perform additional Bayesian updates to
further revise our expectations. The precise mechanics of how these
updates are calculated depend on the distributions of the random vari-
ables involved (e.g., multinomial, Gaussian, Poisson, etc.); we will
describe the mechanisms we use for Surprise Maps later in the paper.

3.2 Bayesian Surprise
Bayesian surprise measures changes in belief by comparing the prior
and posterior probability distributions. It captures the notion that large
changes in belief are salient, and may characterize the importance of
the data that caused these changes. As an example, suppose a doctor
is trying to diagnose a patient with either chicken pox or the common
cold. If the doctor is already confident that the patient has chicken pox
(perhaps the patient spent time playing with a contagious child), then
finding chicken pox blisters is certainly new information, but may not
be surprising. If, by contrast, the doctor was convinced that the patient
had the common cold, but then finds a constellation of blisters, then
this same new data would be surprising. The latter example represents
a large change in the doctor’s beliefs, entailing high Bayesian surprise.

Itti & Baldi [24] proposed Bayesian surprise as a technique to model
human attention, primarily for computer vision and perceptual psy-
chology applications. First, one selects a space of models M (e.g.,
from our previous examples, a “has chicken pox” classifier, and a “has
a cold” classifier). Surprising data are those that cause the largest dif-
ference between our prior beliefs about the model space and our pos-
terior beliefs. In visual processing examples, Itti & Baldi found that
surprising regions are also those that humans attend to at greater rates.
Intuitively, these surprising locations are also the most informative:
they assist us in disambiguating our model space. When used on spa-
tial models, this technique can generate saliency maps that can drive
image analysis, compression, or (in our case) normalization meth-
ods [20]. See Baldi & Itti [4] for a more in-depth overview of using
Bayesian surprise for spatial modeling.

At a high level, we (1) construct a model space M , (2) generate
an initial set of prior beliefs about models P(M ∈M ), and (3) col-
lect data D and perform a Bayesian update step to generate P(M|D)
given P(D|M). Bayesian surprise is then the measure of difference
between the prior and posterior probabilities of each model for some
distance function δ : Surprise= δ (P(M|D),P(M)). Itti & Baldi use the
Kullback-Leibler divergence (or relative entropy) as a distance func-
tion between two probability distributions, in units of Shannon bits.
For a discrete set of models, the KL-divergence is:

KL(P(M |D)||P(M )) =
|M |

∑
i=1

P(Mi|D) log
P(Mi|D)

P(Mi)

KL-divergence is an unbounded quantity, sensitive to extremely
large or small probabilities. However, in practice, neither P(M) nor
P(M|D) are 1 or 0: we are never entirely certain in our beliefs about
a model. For practical values KL is small: KL(0.98, .02) = 5.75,
KL(0.75,0.5) = 0.45. As we consider more models, we expect to see
lower magnitudes of surprise. For example, the range of surprise in
Fig. 1 is equivalent to KL(0.25,0.04).

For data with a temporal component, another factor that impacts
surprise is the frequency of Bayesian updates. More frequent updates
tend to correspond to smaller changes in belief, and so less surprise.
For example, Fig. 7 depicts updates every 5 events, and so the maxi-
mum surprise is very small (0.01). Fig. 6 shows the result of a single
batch update involving 250 events, and the maximum surprise is much
larger (0.53). Reasonable ranges of surprise for use in legends and
color encoding should be chosen with respect to the stability and fre-
quency of update steps. In general, we recommend using Bayesian
surprise primarily as an ordering principle (e.g., “this region contains
the most surprising information”), rather than seeking a standard scale
of surprise applicable across all potential datasets.

The utility of Bayesian surprise depends on several factors: model
selection, choosing priors, and performing Bayesian updates (for in-
stance, how frequently we apply Bayes’ rule). These factors occur in

Bayesian modeling more generally, and so have been well-described
by prior work [6, 22]. We now describe how we have adapted Bayesian
surprise to the domain of data visualization.

4 SURPRISE MAPS

The “misleaders” and “jumblers” presented in section §2.1 have a
common cause: a naı̈ve visual weighting of events. To dampen the sig-
nal of the base rate, one could normalize the density of events by the
population. To deal with increased variance of low population areas,
one could normalize not just by z-score, but also down-weight with re-
spect to the square root of the population size. To deal with the renor-
malization bias, one could down-weight modes or up-weight outliers
(for example, by using a thresholded color encoding [29]). These nor-
malization strategies have a common goal: to make the visual weight
of spatial patterns align with their importance to the analyst.

In general, to overcome the biases in event density maps, we must
be able to visually weight events with respect to a number of poten-
tially conflicting factors. Some of these factors may not be available a
priori, and so will require reassessment as data are available. Many of
these factors are defined only with respect to a given model of event
density. These concerns lead us to the following design requirements
for de-biasing event density maps:

1. Visually weight event densities based on a given model.

2. Support weightings based on multiple models.

3. Dynamically update models based on observed data.

Bayesian surprise supports each of these requirements. In partic-
ular, requirement 3 appears diagnostic of a Bayesian approach to the
problem. While other techniques support reweighting and renormal-
ization using one or more models (for instance, residual plots), they
do not afford dynamic updates of model plausibility, and therefore
new weightings based on streaming or online data. We therefore adapt
Bayesian surprise to highlight salient regions of the event density map
and to de-bias these event density maps for more accurate analysis.

4.1 General Technique
The general algorithm for Surprise Maps is as follows:

1. Select relevant event models. There are many classes of models
that can be spatial, temporal, or spatio-temporal in nature. In this
paper, we focus primarily on spatial models of density.

2. Sediment events into a map of event density. This map can be
discrete, based on given spatial regions (as in a choropleth map)
or binning (histograms), or use continuous estimates of density
(e.g., KDE or Kriging [38]).

3. Update a Bayesian model based on the data and calculate sur-
prise. This involves both creating difference maps of expected
and actual event density, and calculating the posterior probabil-
ity of each model in our model space.

4. Visualize the surprise values. For discrete spatial domains, this is
merely a matter of encoding each surprise value. For continuous
domains, binning or other sampling techniques must be used to
determine which regions have the largest surprise. For single
events, we can visualize the surprise on a per-event basis, rather
than across the entire spatial domain.

For a set of models M , and a set of data D, we define the surprise of
the data as the Kullback-Leibler divergence between the initial (prior)
probability distribution of the models, and the new (posterior) proba-
bility distribution of the models, given the data.

In order to apply the formulae of §3, we must first calculate the like-
lihood P(D|M). Methods for Bayesian inference can either be compu-
tationally intensive, involving techniques such as Monte Carlo meth-
ods to estimate marginal likelihood, or can be restrictive, limited to
only a few classes of models (for instance, those with conjugate priors)



[6]. Our approach can have an arbitrary, heterogeneous M ; likewise,
streaming event data might require frequent, real-time update steps.
Lastly, we want Surprise Maps to be interpretable by analysts. There-
fore, we use a simpler approach, based on differencing, to calculate
operational estimates of P(D|M).

We compute the likelihood through a comparison of the expected
data density E(x,y, t) and the posterior observed data density O(x,y, t).
If O and E are both probability distributions (that is,

∫
O(s)ds = 1, and∫

E(s)ds = 1), then this is a simple differencing operation: P(D|M) =
1 if and only if our observed data exactly matches our expected dis-
tribution and P(D|M) = 0 if and only if our distributions are entirely
disjoint. Other choices of function O(s) require different normaliza-
tion schemes to calculate P(D|M), detailed below.

After each update step, P(M′)=P(M|D)∝ P(D|M)P(M). As P(M)
is a belief about the likelihood of a model, and our assumption is that
M represents our universe of plausible models, we normalize such
that ∑

|M |
i=1 Mi = 1. After each update, we therefore have a new weight-

ing of beliefs about events. When observed data closely matches the
expectations of a model, the model is up-weighted. In cases where the
data largely differs from expectation, the model is down-weighted.

4.2 Model Selection

Selecting appropriate model families requires domain knowledge and
statistical expertise. While it would be useful to have a model that is an
accurate model of the data, for Surprise Maps this is not strictly neces-
sary. A Surprise Map may be useful even if models are relatively poor:
in the worst case scenario, they will devolve into a “mere” normaliza-
tion scheme. For example, the surprise originating from a uniform
model is always a scalar multiple of the event density, resulting in a
Surprise Map no better or worse than a standard heatmap. Having a
variety of models, even relatively simple ones, can create results that
are robust to variation and better communicate uncertainty [22].

In this section, we detail several of the models we employ in our ex-
amples. These models were chosen to be applicable to a large class of
spatial-temporal data, as well as specifically target the biases discussed
in §2.1. They were also chosen to fail gracefully: to quickly approach
small probabilities when evidence against them accumulates, and to
be interpretable when they encounter significant divergence.

4.2.1 Base Rate

A base rate model assumes that we have discrete regions of interest,
and an assumed per-region rate. A common example is a population
model: for instance, in our example in Fig. 1, Nunavut is 0.8% of the
population of Canada: as such, an expectation (E(Nunavut)) is that it
would likewise have 0.8% of the incidents of mischief in Canada. This
0.8% is the base rate.

If we have a discrete spatial domain S (say, states in the U.S.), and a
probability distribution function O, where ∑O(s) = 1 across all spatial
locations s ∈ S, then:

P(D|BaseRate) = 1− 1
2

|S|

∑
i
|O(i)−E(i)|

The normalizing term 1
2 ensures that P(D|M) ∈ [0,1]. For instance,

if we have two states with expected rates of (0,1), and we observe
the exact opposite distribution (1,0), then ∑ |O(i)−E(i)| = 2. Base
rates can be defined across spatial regions (as with population models:
what percentage of people live in a given region?), temporal regions
(as with seasonal models: what percentage of events occur in May?),
or combinations of spatial and temporal information. Models defined
in this way can account for base rate bias (§2.1.1).

4.2.2 Uniform

A uniform model assumes that events are equiprobable, regardless of
their spatial location or time. We can estimate P(D|M) through adher-
ence to this assumption. If we have n events, and an observed event
density rate O(s) at spatial location s, then:

P(D|Uni f orm) = 1− 1
2

|S|

∑
i
|O(i)− 1

n
|

A benefit to this model is that the map of difference is a strict scalar
multiple of a traditional density map. If we have no plausible models,
a uniform model therefore acts as a reasonable default. Large updates
to beliefs about uniform models correspond to spatial modes or partic-
ularly sparse regions.

4.2.3 Gaussian
A Gaussian (or normal) model assumes that the density of events is
centered around a mean, and the expected event density is described
by a Gaussian about this mean. If we have an a priori assumption
about this Gaussian φ(x|σx,µx), and n events with density rate O(s)
and spatial location Xs, then:

P(D|Gaussian) = 1− 1
2

∫
|O(s)−φ(Xs)|ds

We might believe that the events follow a Gaussian distribution, but
have no knowledge of the distribution’s parameters. In this case, we
can fit a Gaussian a posteriori, using observed data. Large updates
to beliefs about dynamic Gaussian models can therefore have three
potential causes: the presence of outliers, the presence of additional
modes beyond the expected mode, and large changes to the mean and
(co)variance. For event data with only a single mode, outliers and ex-
treme events are highlighted, alleviating renormalization bias (§2.1.3).

4.2.4 Sampled Subset
Frequently, an initial sample of events can provide good predictors
of remaining events. Either way, deviations from past behavior can be
useful to visualize. A sampled subset model collects n observed events
and uses them to create a smooth density estimator θ̂(x) (e.g., KDE or
Kriging for spatial domains). For observed event density O(s), then:

P(D|subsetN) = 1− 1
2

∫
|O(s)− θ̂(s)|ds

Large updates to beliefs about subset models are caused by data
that is dissimilar from the sampled data. As with the Gaussian
model above, this results in down-weighting common patterns, fight-
ing renormalization bias (§2.1.3). These models have the added benefit
of being non-parametric. If the N selected events are sufficiently rep-
resentative, arbitrary modes can be down-weighted. There are two
parameters to subset models: the sample size n, and the sampling
method. Different sampling methods can produce different interpreta-
tions of the model. For instance, if we select the first n events, then the
model is expressing temporal divergence: are new events significantly
different in location from older events? If we employ bootstrapping
or other Monte Carlo sampling methods, then we can highlight events
that are dissimilar from the sample.

4.2.5 de Moivre Funnel
The standard deviation of a sampling distribution is estimated through
standard error, SE = σ√

n . Wainer [46] refers to this as “de Moivre’s
equation.” As discussed in §2.1.2, the high variability in discrete re-
gions with small sample size can mislead the viewer. As a trivial ex-
ample, if a county had only one person living in it, then the rate of
some disease would be either 100% (if the person were infected), or
0% (if the person were not); this would give this county either the
highest or lowest rates in the entire country, without strong evidence
that the geographic region was really safer or more dangerous.

The funnel plot, initially proposed for observing publication bias
[15], is a scatterplot where the effect size (in our case, the event rate) is
plotted against the sample size (or some other statistic related to stan-
dard error). Unbiased data should form an approximate funnel shape,
with a decreasing range of effect sizes as the population increases. Fig-
ure 5 shows an example of a funnel, in this case unemployment rates
across all counties of the U.S. As the funnel model assumes Gaussian
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Fig. 5: A funnel plot of the 2008 U.S. unemployment rate by county.
The gray region depicts a 95% confidence interval of the sample mean,
using standard error. As sample size increases, variability decreases.
Large differences in event rates may be an artifact of sample size. Con-
versely, small changes in event rate can be unexpected in high popu-
lation regions. Some interesting counties (where P(D|M) are low) are
Imperial County, CA, which has a somewhat low population, but a
high unemployment rate (30%), and LA County, CA, which has an
unemployment rate that is not much higher than the national average
(12.7%, versus an 8.7% average), but is so populous that its higher rate
is notable. Color encodes the unemployment rate, [0,30%].

error, we can estimate P(D|M) in a procedure somewhat analogous to
a t-test. For each region, we calculate a test statistic from an event rate
O(s) and standard error SEs:

Zs =
O(s)− x̄

SEs

The standard error SEs normalizes with respect to the square root
of the population, as discussed above. The probability of a particular
event s ∈ D is then the likelihood that a point would be at least Zs
distant from the center of the funnel, or (with φ being the pdf of the
standard normal distribution):

P(s|deMoivre) = 1− (2 ·
∫ |Zs|

0
φ(x)dx)

This procedure is roughly equivalent to a two-tailed z-test of means,
and down-weights regions with large differences but small sample
size. Note that unlike the previous examples, where our expectation
functions were probability distributions, here, each event has an in-
dependent probability from [0,1]. For instance, if there are n events,
and each event has 0 deviation from the mean, then ∑

n
i=1 O(i) = n.

Therefore we must choose a different normalization factor:

P(D|deMoivre) =
1
|D| ∑i=1

|D|P(Di|deMoivre)

Large changes to the belief about this model (and so large surprises)
occur where there are both differences from the mean, as well as large
enough sample sizes to filter out locations well within the funnel. By
including the sign of Zd , we can weight event densities by the level of
over- or under-representation. Figure 1 shows how this model can be
used to de-bias choropleth maps.

5 EXAMPLES

In this section, we present a series of Surprise Maps applied to both
synthetic and real-world datasets. These examples show the flexibil-
ity of our approach in terms of supported model types and resulting
visualizations schemes. They also present situations where traditional
maps of event density fail to capture information that is relevant for
analysts. Surprise maps, with the appropriate models, can highlight
important regions that would otherwise be suppressed.

Uniform

Signed Surprise KDE Density

Gaussian

Fig. 6: A Surprise Map from our synthetic dataset presented in §5.1.
The large heatmaps (top) show the signed surprise (left, from [-
0.53,0.53]) and the KDE event density (right). The small heatmaps
(bottom) show differences between observed data and the expectations
provided by our spatial models. Blue regions are where we have seen
fewer events than we expect, and red regions have more density than
expected. After 250 events, belief in the Gaussian model is very close
to 1. As such, the Surprise Map highlights deviations from the Gaus-
sian model, in this case the red spatial outliers. Different model beliefs
would produce a different weighting of events.

5.1 Synthetic 2D Gaussian Data
To better understand surprise calculation, consider a simple example
in which events are independently and pseudo-randomly drawn from
a 2D Gaussian distribution:

1. Select: We use two spatial models in this example. A uniform
model assumes a uniform distribution of events. A Gaussian
model assumes a Gaussian distribution, with fixed parameters
supplied for illustrative purposes.

2. Sediment: We use KDE with a static Gaussian kernel to create
a smooth density estimator across the spatial domain.

3. Update: As a simple prior, we start with both models equiprob-
able. On each update, we revise (1) the posterior P(M|D) (which
then becomes our new prior) and (2) the average surprise of all
events. We calculate the likelihood P(D|M) by gridding the KDE
map into cells, and calculating the average difference between
the expected and the observed spatial distributions.

4. Visualize: The resulting map visualizes a signed version of sur-
prise: for each grid location, we determine how much surprise it
contributes then multiply it by the sign of the difference between
observed and expected density. Large positive signed surprise
indicates unexpectedly high density, and large negative signed
surprise is unexpectedly low density. Figure 6 an example of one
such map, juxtaposed with a traditional density map.

Figure 7 shows how the KDE density map changes over time. Ini-
tially, the sparseness of the data results in few spatial modes, providing
little evidence for either model. As more events come in, one or more
spatial modes in the vicinity of the true mode begin to arise. These
modes are consonant with a Gaussian model, but are unlikely given
a uniform model. After each Bayesian update, belief in the Gaussian
model increases. This change in probabilities across the model space
results in surprise. Once the Gaussian model dominates the uniform
model, the most surprising events are outliers, and spatial modes oc-
curring away from the true center. We encode surprise using color,
with bright reds and blues for the extrema of the scales. This pixel
boosting [37] emphasizes the importance of these unexpected regions.



Average Surprise

P(Uniform|Data)

P(Gaussian|Data)

Fig. 7: Changes in beliefs about spatial models leading to surprise. Here the events are sampled from a Gaussian distribution, and there are two
proposed spatial models of events: a Gaussian (in this case, the correct model), and a uniform model. Initially, both models are equiprobable.
However, as more events are processed, modes that are in keeping with a Gaussian model (but would be unlikely in a uniform model), adjust
the modal beliefs in favor of the Gaussian model (causing surprise). Once the Gaussian model is established as the clear favorite, the surprise of
events tapers off, asymptotically approaching 0. Probability histograms range from [0,1], average surprise ranges from [0,0.01] bits.

Fig. 8: Signed Surprise Map (left) and KDE density map (right) of 313
fires in northern Los Angeles county, from the spacetime package for
R [40]. M consists of Gaussian, uniform, and sampled subset (first
25 fires) models. Signed surprise is on the interval [−0.53,0.53]. The
sampled subset model quickly becomes the likeliest model (indicat-
ing that fires tend to reoccur in similar spatial regions). The first few
fires occurred in the far southwest, with isolated fires in regions in the
southeast. Over time, this original spatial mode extends slightly south-
wards. The Surprise Map highlights this new, dangerous region. The
faint blue regions in the southeast show locations where fires occurred
in the first 25 events, but not subsequently.

5.2 U.S. Unemployment
Figure 9 presents an example of a choropleth map of signed surprise,
showing per-county unemployment data across the United States. As
with Fig. 1, M takes into account both the population of counties to
determine deviation from the average per-capita rate, and normalized
effect size under the assumption that smaller counties have higher vari-
ance in unemployment.

A choropleth map of density contains arguably misleading spatial
patterns. Large portions of the Great Plains appear to have abnormally
low unemployment (the sampling error bias mentioned in §2.1.2). The
map itself is visually quite complex, with large swings from county to
county giving a checkerboard appearance to the data.

The Surprise Map, by contrast, is almost solid white. Most coun-
ties either have unemployment rates well in keeping with the national
average, or are not populous enough for their high or low rates to be
significantly interesting. Outliers, like the LA and Detroit metro ar-
eas, are highlighted, showing that these locations have significant and
robust high unemployment. Filtering out potentially spurious spatial
patterns makes spatial signals easier to identify.

5.3 Northern L.A. County Fires
Figure 8 shows a signed Surprise Map of 313 fires in northern Los
Angeles County, CA. Similar to the example presented in §5.1, these
heatmaps are generated by spatially binning the region of interest, and
then measuring observed versus expected event density in each bin.

An analyst might be interested in assessing risk: are there regions
with more fires than expected? If so, do these regions change over

Unemployment Rate

0% 30.1%

(a) Per capita event rate map.

Signed Surprise

-0.114 0.114

(b) Signed Surprise Map.

Fig. 9: Comparing a traditional map of the 2008 per-capita unemploy-
ment rate (Fig. 9a) with a Surprise Map (Fig. 9b). M is a population
model and a de Moivre funnel (see Fig. 5) for details. The traditional
map seems to show that the great plains region has particularly low un-
employment, but the low populations in these regions make those data
unreliable. Down-weighting sparse counties with high variance, the
Surprise Map shows robustly high unemployment in the Los Angeles
and the Detroit metro areas. The Washington D.C. metro area has sur-
prisingly low unemployment, perhaps due to the many jobs provided
by the Federal government and related agencies.



time? A KDE map of fire density (Fig. 8, right) primarily shows a
spatial mode in the southwest. This map would be identical no matter
when these modal fires occurred: the mode might have been generated
in the first few timepoints, or across the entire temporal window. Juxta-
position of potentially large numbers of frames is required to examine
temporal patterns. There are over 9,000 timepoints in this dataset; in
most, no fires occur. Examining shifts in fires across multiple maps
places a burden on temporal or spatial memory.

The Surprise Map (Fig. 8, left), builds a post hoc model based on the
first 25 events, along with a priori models with uniform and Gaussian
densities. The first 25 fires are highly representative of the remaining
fires: this model has the highest belief of the three spatial models after
35 fires, and asymptotically approaches 1.0 thereafter. This indicates
that there are not large spikes of fires: rather, fires tend to occur in
regular patterns. However, the Surprise Map also highlights the differ-
ences between the observed and expected density, showing a shift in
spatial mode. Initially, fires are centered slightly to the southwest of
the center of the region. While fires still occur in this region through-
out the dataset, by the end of the temporal region, this mode has shifted
further south and west, creating a red region of positive surprise.

5.4 Fiji Island Earthquakes

(a) Signed Surprise and KDE Density after 100 events.

(b) Signed Surprise and KDE Density after 1,000 events.

Fig. 10: Signed Surprise Maps (1st and 3rd from left) and KDE density
maps (2nd and 4th from left) of earthquakes in the South Pacific, near
Fiji, from the R datasets package [42], after 100 (Fig. 10a) and 1,000
(Fig. 10b) events. M consists of Gaussian, uniform, and sampled sub-
set (in this case a bootstrapped sample of 50 events) models. Signed
surprise is from [−0.53,0.53]. The bootstrapped model eventually be-
comes the most likely, reflecting long-term homogeneity in quake lo-
cation. This homogeneity makes it difficult to compare densities using
a traditional KDE map. Bootstrapped models afford comparison to a
sampled representation of the whole, highlighting differences such as
the underrepresentation of northern quakes after 100 events.

Figure 10 provides another example of a heatmap-style Surprise
Map. The dataset contains 1,000 geo-tagged earthquakes occurring
around Fiji in the South Pacific.

Analysts might be interested in emerging hot spots (new spatial
modes) or shifts in event rate (quakes in formerly quiet regions). A

traditional density map only partially supports identification of these
regions. As earthquakes tend to occur in the same regions with similar
frequencies, it can be difficult to identify regions of interest at different
timepoints. Compare the KDE density maps in Figs. 10a and 10b.

As in the previous example, our Surprise Map employs post hoc
model building, in this case via bootstrap sampling. Bootstrapping
allows robust estimation of spatial parameters in situations where we
have few priors, our priors are weak, or paramateric assumptions are
violated [16, 41]. Our bootstrapped model serves as a useful proxy
for the dataset as a whole. With such a proxy, we can compare time
points with very similar spatial patterns. In this case, the region of
deep blue negative surprise after 100 events shows a discrepancy from
the sample. After 1,000 events, this discrepancy has weakened.

5.5 Seabird Mortality
Figure 11 demonstrates how Surprise Maps can use both spatial and
temporal models. The dataset consists of observed coastal bird deaths,
identified by species, time, and location, from 1999-2015.

An analyst might be interested in abnormal patterns of mortality:
species of birds, or times of the year, where more birds die than ex-
pected. Traditional density maps are not informative for this task, for
several reasons. First, some species of birds are more common than
others, and so can drown out variations in density among the other
species. For instance, 43% of all recorded deaths in 2014 were Small
Alcids (a species group includings puffins). Because of this mode,
many species appear to have flat death rates across the year, despite
significant temporal variation, an example of a renormalization bias
(compare to Fig. 11b). Another factor hidden by the density map
is seasonal variation. Across the entire dataset, very few deaths are
recorded in the spring (e.g., 3% of deaths occur in May, but 14% oc-
cur in October). This produces a base rate bias: for instance, a large
number of Small Alcid deaths occured in December 2014, but, in gen-
eral, 83% of Small Alcid deaths occur in December or January; it is
difficult to tell if this mode is an unexpected deviation, or an exemplar
of the general trend.

The Surprise Map (Fig. 11c), using both a population model and a
temporal model, re-weights the data to highlight potential regions of
interest. The temporal model calculates what percentage of deaths,
across species, are anticipated in each month. We see a region of
large negative surprise in Small Alcid deaths in January: this derives
from a large discrepancy from our population model. Only 0.15% of
Small Alcid deaths were reported in January 2015: normally, 40.56%
of Small Alcid deaths occur in January. While the normalized event
density map has many patches with low density, the central, mostly
yellow region of the Surprise Map shows that these low death rates
are typical for the spring and summer. However, the mostly bluish
columns later in the year indicate that, as winter sets in, the continued
absence of bird deaths for many species is somewhat surprising.

6 DISCUSSION

Surprise Maps serve two purposes: to de-bias perceptions of event
density through renormalization based on multiple models, and to
highlight anomalous spatial or temporal regions. Using Bayesian
methods to both weight and update our model space affords data-
driven adjustments that have a meaningful representation in the data
domain: we are adjusting beliefs about our models, based on how
closely our observed data matches what the models predict. We ad-
vocate that this combination of “simple, but meaningful” be carried
over into the model selection process as well.

Model selection, and the best suite of models for a given dataset,
remains an open question. We had three goals for model selection in
this paper: (1) Models should be comprehensible. Less accurate, but
more explainable models, may be more useful for the intended audi-
ence, especially if they are not experts in spatial modeling [21]. (2)
Models should fail gracefully: that is, models should have a mean-
ingful interpretation even when they are poor fits for the data, or al-
ternatively be down-weighted reliably if their expectations are a poor
match for the data. (3) The model space should be parsimonious.
Surprise, as a composite metric, can be difficult to interpret. With only



(a) Bird death event rate map. (b) Per species normalized bird death map. (c) Signed Surprise Map.

Fig. 11: Comparing event density (Fig. 11a) and event rate (Fig. 11b) maps of 2014 per-species surveyed bird deaths with a Surprise Map (Fig.
11c). Data comes from the COASST beached bird dataset [10]. M is a population model based on data from 1999-2015, and a seasonal model
based on per-month variation. Signed surprise is from [−0.9,0.9]. Common species families like gulls and alcids (puffins) dominate the density
map, making it difficult to reason about non-modal species. The normalized rate map allows analysts to better distinguish intra-species patterns,
but hides deviations from seasonal patterns, such as the uncommonly low death rate of Small Alcids in January (0.15% of all 2014 Small Alcid
deaths): normally, 40.56% of Small Alcid deaths occur in January.

a few models, it is possible to directly visualize maps of model ex-
pectation in concert with the Surprise Map (as in Fig. 6), and so see
exactly what “causes” surprise in particular regions. As the number of
models increases, this provenance information becomes more difficult
to interpret.

An advantage of the Surprise Map technique is that heterogeneous
models can coexist in M . All that is required is a technique to cal-
culate P(M|D). Spatial models and temporal models can contribute
to a single scalar value, despite having different domains of interest.
Analysts can consider large parameter spaces of a particular class of
model (for instance, Gaussians with different σs, or mixtures of multi-
ple Gaussians) [4]. This conceptualization also affords use with a wide
variety of data sources and outputs: both streaming and non-streaming
data sources, and both continuous and discrete thematic maps.

6.1 Implementation & Complexity
The models we present require comparison of observed vs. expected
events. Calculation of expectation may be simple (e.g., for the case of
a uniform model, it is a O(1) value lookup), but it also might be quite
complex. For instance, a k-means model, where spatial expectation
is measured by distance to the closest of k clusters, is, if k is allowed
to vary, NP-hard [30]. Structuring the observations themselves has a
lower bound of O(n). For Fig. 1, n is 13; for Fig. 10, it is 1,000. This
complexity can be reduced through approximation algorithms (e.g.,
Lang et al. [27] compare a number of fast approximation algorithms
for KDE). However, this requires visualizing not just the uncertainty of
models, but also the uncertainty in our approximation. Visual analytics
systems that can handle such incremental and probabilistic queries on
large data remain an open design challenge (cf. Fisher et al. [18]).

Traditional event visualizations have the benefit of being local.
Aside from occasional renormalization steps (see §2.1.3), updates to
event density are constant time operations. Surprise Maps are to some
extent global: beliefs about models will change with each new data
point, and so surprise must be recalculated at each spatial location.
Depending on the spatial resolution of data, this may make Surprise
maps infeasible for online visualization of streaming temporal events.
Sub-sampling, sparse spatial estimation, and GPU acceleration (as in
[43]), can alleviate this issue.

6.2 Limitations and Future Work
This paper describes techniques for measuring surprise for a visualiza-
tion application, and how surprise can be an important factor in analyz-
ing event data. However, many visual aspects of the design have yet to

be examined in detail. Surprise requires the communication of proba-
bilities driven by Bayes’ rule. Prior research [32, 39] has shown that
caution must be taken in presenting these sort of conditional probabil-
ities, due to the difficulty of interpretation. Future research remains to
study how analysts reason about probability distributions, especially
across spatial and temporal regions. We are conducting ongoing work
to examine how analysts, especially those not well-versed in statistics,
interpret patterns in Surprise Maps. In general, effective methods for
presenting complex statistical concepts to viewers with variable nu-
meracy or statistical expertise is an open challenge in visualization.

Surprise Maps make the informed choice to promote outliers and
exceptions at the expense of means and modes. This is done under the
assumptions that (1) analysts will also be looking at more traditional
maps, and (2) frequently these surprising points are the ones most use-
ful for analysis, and that base rates are less useful. For some analytic
tasks, these assumptions are violated. For instance, in order for Sur-
prise Maps to be directly comparable across datasets, the model spaces
of the two Surprise Maps ought to be shared. Traditional density maps,
by contrast, have no such restriction.

6.3 Conclusion
In this paper, we argue that traditional thematic maps of event density
exhibit flaws. By failing to account for models of expectation, they
may hide or obscure important spatio-temporal trends. Bayesian sur-
prise, by providing a weighting scheme driven both by data and by
models of expectation, circumvents these flaws. We apply Bayesian
surprise to the information visualization domain to create Surprise
Maps, visualizations that rely on models of event density to calculate
and present surprise. We offer guidance on how to select meaningful
models for these maps. Through analysis of both synthetic and real-
world datasets, we show how Surprise maps can correct some short-
comings of thematic maps of event density.
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