Skip to content

everything-ai is your essential resource for delving into AI and Generative AI. This curated collection includes courses πŸŽ“, certifications πŸ“œ, books πŸ“š, libraries πŸ› , and research papers πŸ”¬, along with tools πŸ”§, datasets πŸ“Š, and networking 🀝 opportunities.

License

Notifications You must be signed in to change notification settings

ayushi-agarwall/everything-ai

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

24 Commits
Β 
Β 
Β 
Β 

Repository files navigation

everything-ai

Welcome to the AI & Generative AI Master Collection!

Hey there! πŸ‘‹ If you’re curious about AI & Generative AIβ€”from building your first model to mastering techniquesβ€”you’re in the right place. I’ve put together this collection to help you navigate the ever-evolving world of Gen AI without getting lost in the shuffle.

This page is like a roadmap: each section offers handpicked resources to build your skills and deepen your understanding. No matter where you are in your journey, there's something here for you.

Jump Right In πŸš€

πŸŽ“ Courses, Tutorials & Certifications

Course Name Platform/Institution Mode Instructor(s) Level Duration Cost URL
AI For Everyone Coursera Online Andrew Ng 01- Beginner ~10 hours Free (Audit) / $49 AI For Everyone
Introduction to Generative AI Coursera Online Google Cloud Training Team 01- Beginner ~1 hour Free Introduction to Generative AI
Generative AI Fundamentals Coursera Online IBM 01- Beginner ~3 months Free (Audit) / $49/month Generative AI Fundamentals
Generative AI for Everyone Coursera Online DeepLearning.AI 01- Beginner ~4 weeks Free (Audit) / $49 Generative AI for Everyone
AI Foundations for Everyone Coursera Online IBM 01- Beginner ~3 months Free (Audit) / $49/month AI Foundations for Everyone
Generative AI for Software Development Coursera Online DeepLearning.AI 01- Beginner ~3 months Free (Audit) / $49/month Generative AI for Software Development
Generative AI Leadership & Strategy Coursera Online Vanderbilt University Faculty 01- Beginner ~3 months Free (Audit) / $49/month Generative AI Leadership & Strategy
Generative AI Automation Coursera Online Vanderbilt University Faculty 01- Beginner ~3 months Free (Audit) / $49/month Generative AI Automation
Introduction to Generative AI Learning Path Coursera Online Google Cloud Training Team 01- Beginner ~8.5 hours Free Introduction to Generative AI Learning Path
Artificial Intelligence Tutorial Tutorialspoint Online Tutorialspoint Team 01- Beginner Self-paced Free Artificial Intelligence Tutorial
Artificial Intelligence Tutorial Javatpoint Online Javatpoint Team 01- Beginner Self-paced Free Artificial Intelligence Tutorial
Artificial Intelligence Tutorial GeeksforGeeks Online GeeksforGeeks Team 01- Beginner Self-paced Free Artificial Intelligence Tutorial
AI for Beginners Microsoft Online Microsoft Team 01- Beginner Self-paced Free AI for Beginners
Generative AI for Beginners Microsoft Online Microsoft Team 01- Beginner Self-paced Free Generative AI for Beginners
Introduction to Generative AI Google Cloud Online Google Cloud Training Team 01- Beginner ~45 minutes Free Introduction to Generative AI
Generative AI Handbook: A Roadmap for Learning Resources GitHub Online Community Contributors 01- Beginner Self-paced Free Generative AI Handbook
Learn Artificial Intelligence Hackr.io Online Various Instructors 01- Beginner Self-paced Free/Paid Learn Artificial Intelligence
Convolutional Neural Networks for Visual Recognition (CS231n) Stanford University Video Lectures Fei-Fei Li, Justin Johnson, Serena Yeung 01- Beginner 10 weeks Free CS231n
Introduction to Artificial Intelligence (CS188) UC Berkeley Video Lectures Pieter Abbeel, Dan Klein 01- Beginner 14 weeks Free CS188
Introduction to Reinforcement Learning DeepMind Video Lectures David Silver 01- Beginner 10 weeks Free Introduction to Reinforcement Learning
Natural Language Processing with Deep Learning (CS224N) Stanford University Video Lectures Christopher Manning, Richard Socher 01- Beginner 10 weeks Free CS224N
Deep Learning New York University Video Lectures Yann LeCun 01- Beginner 14 weeks Free Deep Learning
Introduction to Deep Learning MIT Video Lectures Alexander Amini, Wojciech Matusik 01- Beginner 8 weeks Free Introduction to Deep Learning
Mathematics for Machine Learning Coursera / Imperial College Online Course David Dye, Sam Cooper 01- Beginner 3 months Paid Mathematics for Machine Learning
Data Science and Machine Learning Bootcamp with R Udemy Self-paced Jose Portilla 01- Beginner 10 hours Paid Data Science and Machine Learning Bootcamp with R
Complete Machine Learning and Data Science Bootcamp with Python Udemy Self-paced Multiple Instructors 01- Beginner 44 hours Paid Complete Machine Learning and Data Science Bootcamp with Python
Deep Learning Specialization Coursera Online Andrew Ng 02- Intermediate ~3 months Free (Audit) / $49/month Deep Learning Specialization
Generative AI for Product Managers Coursera Online IBM 02- Intermediate ~3 months Free (Audit) / $49/month Generative AI for Product Managers
Generative AI for Data Scientists Coursera Online IBM 02- Intermediate ~3 months Free (Audit) / $49/month Generative AI for Data Scientists
Generative AI for Data Analysts Coursera Online IBM 02- Intermediate ~3 months Free (Audit) / $49/month Generative AI for Data Analysts
Machine Learning Coursera Online Andrew Ng 02- Intermediate ~11 weeks Free (Audit) / $49 Machine Learning
Generative AI Full Course YouTube Online freeCodeCamp 02- Intermediate ~30 hours Free Generative AI Full Course
Machine Learning Specialization Coursera / Stanford Online Course Andrew Ng 02- Intermediate Varies Paid Machine Learning Specialization
Data Science: Machine Learning edX / Harvard Online Course Rafael Irizarry 02- Intermediate 8 weeks Paid Data Science: Machine Learning
Machine Learning Coursera / University of Washington Online Course Emily Fox, Carlos Guestrin 02- Intermediate 8 weeks Paid Machine Learning
Deep Unsupervised Learning (CS294) UC Berkeley Video Lectures Pieter Abbeel 03 - Advanced 14 weeks Free CS294
Deep Multi-Task and Meta Learning (CS330) Stanford University Video Lectures Chelsea Finn 03 - Advanced 10 weeks Free CS330

πŸ’° Grants, Accelerators & Credits

Name URL Extended by Grant Amount Location
AI Grant β€” accelerator for seed-stage AI startups AI Grant Hersh Desai, Lenny Bogdonoff, Luke Farritor, Asara Near, Nat Friedman, Daniel Gross $250,000 on an uncapped SAFE for your AI-native product startup
$350,000 in Azure credits + $250,000 in additional credits"
Anywhere
AIRISE by European Union AIRISE European Union Up to €60,000 Europe
Superalignment Fast Grants Superalignment Fast Grants OpenAI $100K-$2M grants for academic labs, nonprofits, and individual researchers Anywhere
Anthology Fund Anthology Fund Anthropic Funding over $100k
$25,000 in free Anthropic credits
Anywhere
Together AI Studio Together AI Studio Together AI $500k to $5M, $600K in credits Anywhere
Llama Impact Grants Llama Impact Grants Meta $500K Anywhere
Upekkha Upekkha Upekkha $125k investment for 7% equity
$700k in partner credits
Anywhere
Akamai (Linode) Akamai (Linode) Linode Up to $120k in credits Anywhere
SBIR/STTR Program SBIR/STTR Program NASA Up to $1 million during first three years, plus up to nearly $3 million or more through Post Phase II opportunities US
America's Seed Fund (NSF) America's Seed Fund NSF Up to $275,000 in non-dilutive funding for R&D, Phase I - $1,000,000, Phase II - $500,000 US
Retool Retool Retool $25k in Retool credits Anywhere
Hessian AI Hessian AI Hessian AI Varies Germany
HF0 HF0 HF0 $500,000 for 2.5% equity Anywhere
Accel Accel Accel Investment of up to $500k
$250k in GCP credits
$150k in Azure credits
25 Microsoft 365 seats for 1 year
Up to $100K in AWS credits
UAE, India, Singapore, Indonesia
AI2 Incubator AI2 Incubator AI2 Incubator $90,000 on Day 1
Up to $500,000 seed
Up to $450,000 in cloud credits
Anywhere
The House AI Accelerator The House AI Accelerator UC Berkeley (for Alumni) $1M in funding and up to $750k in perks UC Berkeley
Microsoft Azure Microsoft Azure Microsoft $150,000 Azure Credits Anywhere
Google Cloud Google Cloud Google $350,000 GCP credits over 2 years Anywhere
AWS Generative AI Accelerator AWS Generative AI Accelerator AWS $100K-$300k in AWS Credits Anywhere
Conviction Embed Conviction Embed Embed $150,000 uncapped, no-discount MFN SAFE
$350,000 Azure Credits
$50,000 OpenAI, Anthropic, Baseten credits
US

🀝 Fellowships

Name URL Cost Duration Platform/Institution Mode Level Grant Amount
DeepMind Fellowship DeepMind Fellowship Free 12 months DeepMind In-person Advanced Varies
Google Research PHD Fellowship Google Research PHD Fellowship Free 12 months Google In-person Advanced Varies
Stanford Graduate Fellowships Stanford Graduate Fellowships Varies Varies Stanford University In-person/Online Graduate Level -
Borealis AI Fellowships program Borealis AI Fellowships Free Varies RBC Borealis - Graduate Level $10,000
Fellowship.ai Fellowship.ai Free 3 months Fellowship.ai Online Intermediate -
ETH AI Center Doctoral Fellowships ETH AI Center Fellowships Free Varies ETH AI Center - Advanced CHF 72,800 (1st year), CHF 78,000 (2nd year), CHF 83,200 (3rd year)
NHS Fellowship in Clinical Artificial Intelligence NHS Fellowship Free 12 months NHS In-person Advanced -
AI Accountability Fellowships AI Accountability Fellowships Free 10 months Pulitzer Center Online Advanced Up to $20,000
University of Toronto AI Fellowships University of Toronto AI Fellowships Free 1 year University of Toronto In-person Advanced $85,000 CDN/year, plus benefits
AI4All AI4All Free 4 weeks AI4All In-person High School -
Veritas (Multiple) Veritas Fellowship Free 12-15 weeks Veritas Online High School -
AI Policy Fellowship 2025 AI Policy Fellowship Free Varies Institute for AI Policy and Strategy (IAPS) In person + Remote Early-Mid Career Professionals $15,000 USD stipend, plus benefits
U.S.-India AI Fellowship Program U.S.-India AI Fellowship Free 12 months ORF America In person + Remote Early-Mid Career Professionals -
Cooperative AI PhD Fellowship 2025 Cooperative AI Fellowship Free Varies Cooperative AI - Early Career Professionals $40,000 + benefits
Winter Fellowship 2025 Winter Fellowship Free Varies Center for the Governance of AI In person + Remote Early-Mid Career Professionals Β£9,000 + expenses
Global Fellowship Programme on AI & Market Power Global Fellowship Programme Free - European AI & Society - Individual researchers/teams $70,000
Global AI Safety Research Fellowship 2025 Global AI Safety Fellowship Free 8 months Impact Academy In person + Remote All Competitive Stipend

πŸ”— Resource Collections

Name Repo URL Maintained By Collection Type
awesome-artificial-intelligence Link owainlewis AI Collection
Machine Learning Engineering Open Book Link stas00 AI Collection
Awesome MLOps Link visenger AI Collection
ML YouTube Courses Link dair-ai AI Collection
Keeping up with AGI Link cto_junior AI Collection
The Data Scientists Toolbox Link Moad HANI AI Collection
Awesome Generative AI Link steven2358 AI Collection
AI Cheatsheets Link kailashahirwar Cheatsheet
Large Language Model Course Link mlabonne Course
Generative AI for Beginners Link microsoft Course
Data Science for Beginners Link microsoft Course
ML-For-Beginners Link microsoft Course
AI-For-Beginners Link microsoft Course
MLOps Course Link GokuMohandas Course
MLOps Zoomcamp Link DataTalksClub Course
Machine Learning Zoomcamp Link DataTalksClub Course
LLM Zoomcamp Link DataTalksClub Course
LLM Datasets Link mlabonne Dataset collection
RAG Techniques Link NirDiamant Development & Implementation
GenAI Agents Link NirDiamant Development & Implementation
Made With ML Link GokuMohandas Development & Implementation
Monitoring ML Link GokuMohandas Development & Implementation
Bayesian Methods for Hackers Link CamDavidsonPilon Development & Implementation
awesome-ai-agents Link slavakurilyak Development & Implementation
awesome-datascience Link academic Learning
ML-From-Scratch Link eriklindernoren Learning
Zero to Mastery in Data Science Link desicochrane Learning
Deep Learning - All You Need to Know Link instillai Learning
100-Days-Of-ML-Code Link Avik-Jain Learning
Awesome-LLMs-Evaluation-Papers Link tjunlp-lab LLM Evaluation
AI Math Roadmap Link jasmcaus Math for AI
data-science-ipython-notebooks Link donnemartin Notebooks
D2L.ai: Interactive Deep Learning Book with Multi-Framework Code, Math, and Discussions Link d2l-ai Notebooks
Open LLMs Link eugeneyan Open LLM Collection
applied-ml Link eugeneyan Paper & Blog Collection
Awesome-LLM-Inference Link DefTruth Paper & Blog Collection
KG-LLM Papers Link zjukg Paper Collection
ML Papers of the Week Link dair-ai Paper Collection
awesome-speech-recognition-speech-synthesis-papers Link zzw922cn Paper Collection
recommenders Link recommenders-team Recommendation Algorithms
Google Research Link google-research Research Collection
AI Expert Roadmap Link AMAI-GmbH Roadmap
Deep Learning Papers Reading Roadmap Link floodsung Roadmap
Data Scientist Roadmap Link boringPpl Roadmap
data-scientist-roadmap Link MrMimic Roadmap
nlp-roadmap Link graykode Roadmap
Prompt Engineering Link NirDiamant Techniques
Awesome-LLMOps Link tensorchord Tools

πŸ“š Research Papers, Books & Reading Lists(Must Read)

No. Title Authors URL Release Date Category Type
1 Keeping the neural networks simple by minimizing the description length of the weights Geofrey E. Hinton and Drew van Camp Link 1993 Deep Learning Research Paper
2 A Tutorial Introduction to the Minimum Description Length Principle Peter GrΓΌnwald Link 2004 Inductive inference Research Paper
3 Machine Super Intelligence Shane Legg Link 2008 Machine Intelligence Research Paper
4 The First Law of Complexodynamics Scott Aaronson Link 2011 Kolmogorov Complexity Article
5 ImageNet Classification with Deep Convolutional Neural Networks Krizhevsky, A., Sutskever, I., Hinton, G. E. Link 2012 Computer Vision Research Paper
6 Kolmogorov Complexity and Algorithmic Randomness A. Shen, V. A. Uspensky, and N. Vereshchagin Link 2013 Algorithmic Information Theory Book
7 Playing Atari with Deep Reinforcement Learning Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M. Link 2013 Reinforcement Learning Research Paper
8 Recurrent Neural Network Regularization Wojciech Zaremba, Ilya Sutskever, Oriol Vinyals Link 2014 Deep Learning Research Paper
9 Quantifying the Rise and Fall of Complexity in Closed Systems: the Coffee Automaton Scott Aaronson, Sean M. Carroll, Lauren Ouellette Link 2014 Deep Learning Research Paper
10 Neural Turing Machines Alex Graves, Greg Wayne, Ivo Danihelka Link 2014 Deep Learning Research Paper
11 Generative Adversarial Nets Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y. Link 2014 Generative Models Research Paper
12 DeepFace: Closing the Gap to Human-Level Performance in Face Verification Taigman, Y., Yang, M., Ranzato, M. A., Wolf, L. Link 2014 Computer Vision Research Paper
13 Neural Machine Translation by Jointly Learning to Align and Translate Bahdanau, D., Cho, K., Bengio, Y. Link 2014 NLP Research Paper
14 Sequence to Sequence Learning with Neural Networks Sutskever, I., Vinyals, O., Le, Q. V. Link 2014 NLP Research Paper
15 Show and Tell: A Neural Image Caption Generator Vinyals, O., Toshev, A., Bengio, S., Erhan, D. Link 2014 Computer Vision Research Paper
16 DeepSpeech: Scaling up end-to-end speech recognition Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., Prenger, R., Satheesh, S., Sengupta, S., Coates, A., Ng, A. Y. Link 2014 Speech Research Paper
17 The Unreasonable Effectiveness of Recurrent Neural Networks Andrej Karpathy Link 2015 Deep Learning Article
18 Understanding LSTM Networks Christopher Olah Link 2015 Deep Learning Article
19 Pointer Networks Oriol Vinyals, Meire Fortunato, Navdeep Jaitly Link 2015 Deep Learning Research Paper
20 Order Matters: Sequence to sequence for sets Oriol Vinyals, Samy Bengio, Manjunath Kudlur Link 2015 Deep Learning Research Paper
21 Deep Residual Learning for Image Recognition Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Link 2015 Deep Learning Research Paper
22 Multi-Scale Context Aggregation by Dilated Convolutions Fisher Yu, Vladlen Koltun Link 2015 Deep Learning Research Paper
23 Deep Speech 2: End-to-End Speech Recognition in English and Mandarin Baidu Research – Silicon Valley AI Lab Link 2015 Deep Learning Research Paper
24 A Neural Algorithm of Artistic Style Gatys, L. A., Ecker, A. S., Bethge, M. Link 2015 Computer Vision Research Paper
25 Deep Reinforcement Learning with Double Q-learning Hasselt, H. V., Guez, A., Silver, D. Link 2015 Reinforcement Learning Research Paper
26 Deep Residual Learning for Image Recognition He, K., Zhang, X., Ren, S., Sun, J. Link 2015 Computer Vision Research Paper
27 Identity Mappings in Deep Residual Networks Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Link 2016 Deep Learning Research Paper
28 WaveNet: A Generative Model for Raw Audio van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., Kavukcuoglu, K. Link 2016 Speech Research Paper
29 Neural Architecture Search with Reinforcement Learning Zoph, B., Le, Q. V. Link 2016 Machine Learning Research Paper
30 Neural Message Passing for Quantum Chemistry Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, George E. Dahl Link 2017 Deep Learning Research Paper
31 A Simple Neural Network Module for Relational Reasoning Adam Santoro, David Raposo, David G.T. Barrett, Mateusz Malinowski, Razvan Pascanu, Peter Battaglia, Timothy Lillicrap Link 2017 Deep Learning Research Paper
32 Variational Lossy Autoencoder Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya Sutskever, Pieter Abbeel Link 2017 Deep Learning Research Paper
33 A Survey of Deep Reinforcement Learning Techniques Li, Y. Link 2017 Reinforcement Learning Research Paper
34 DeepFM: A Factorization-Machine based Neural Network for CTR Prediction Guo, H., Tang, R., Ye, Y., Li, Z., He, X. Link 2017 Recommender Systems Research Paper
35 Neural Style Transfer: A Review Jing, Y., Yang, Y., Feng, Z., Ye, J., Yu, Y., Song, M. Link 2017 Computer Vision Research Paper
36 Attention Is All You Need Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., Polosukhin, I. Link 2017 Natural Language Processing (NLP) Research Paper
37 Deep Reinforcement Learning from Human Preferences Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, Dario Amodei Link 2017 Reinforcement Learning Research Paper
38 Deep Learning based Recommender System: A Survey and New Perspectives Zhang, S., Yao, L., Sun, A., Tay, Y. Link 2017 Recommender Systems Research Paper
39 Neural Collaborative Filtering He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.-S. Link 2017 Recommender Systems Research Paper
40 AlphaGo Zero: Mastering the game of Go without human knowledge Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., et al. Link 2017 Reinforcement Learning Research Paper
41 VQ-VAE: Neural Discrete Representation Learning van den Oord, A., Vinyals, O., Kavukcuoglu, K. Link 2017 Generative Models Research Paper
42 The Illustrated Transformer Jay Alammar Link 2018 Transformers Article
43 Relational Recurrent Neural Networks Adam Santoro, Ryan Faulkner, David Raposo, et al. Link 2018 Deep Learning Research Paper
44 YOLOv3: An Incremental Improvement Redmon, J., Farhadi, A. Link 2018 Computer Vision Research Paper
45 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding Devlin, J., Chang, M.-W., Lee, K., Toutanova, K. Link 2018 NLP Research Paper
46 The Bitter Lesson Rich Sutton Link 2019 AI Philosophy Article
47 GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism Yanping Huang, Youlong Cheng, et al. Link 2019 Deep Learning Research Paper
48 Scaling Laws for Neural Language Models Jared Kaplan, Sam McCandlish, et al. Link 2020 Scaling Laws Research Paper
49 Dense Passage Retrieval for Open-Domain Question Answering Vladimir Karpukhin, Barlas Oguz, et al. Link 2020 Language Models Research Paper
50 Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks Patrick Lewis, Ethan Perez, et al. Link 2020 RAG Research Paper
51 GPT-3: Language Models are Few-Shot Learners Brown, T. B., Mann, B., Ryder, N., et al. Link 2020 NLP Research Paper
52 Zero-Shot Text-to-Image Generation Ramesh, A., Pavlov, M., et al. Link 2021 Generative Models Research Paper
53 Self-Instruct: Aligning language models with self-generated instructions Yizhong Wang, et al. Link 2022 Language Models Research Paper
54 Chinchilla: Training Compute-Optimal Large Language Models Jordan Hoffmann, Sebastian Borgeaud, et al. Link 2022 Language Models Research Paper
55 Training Language Models to Follow Instructions with Human Feedback Long Ouyang, Jeff Wu, et al. Link 2022 Language Models Research Paper
56 Precise Zero-Shot Dense Retrieval Without Relevance Labels Luyu Gao, Xueguang Ma, Jimmy Lin, Jamie Callan Link 2022 Language Models Research Paper
57 Understanding Deep Learning Simon J.D. Prince Link 2023 Deep Learning Book
58 Zephyr: Direct Distillation of LM Alignment Lewis Tunstall, Edward Beeching, et al. Link 2023 Reinforcement Learning Research Paper
59 Lost in the Middle: How Language Models Use Long Contexts Nelson F. Liu, Kevin Lin, et al. Link 2023 Language Models Research Paper
60 Alpaca: A Strong, Replicable Instruction-Following Model Stanford Center for Research on Foundation Models Link 2023 Language Models Research Paper
61 Llama 2: Open Foundation and Fine-Tuned Chat Models Hugo Touvron, Louis Martin, et al. Link 2023 Language Models Research Paper
62 LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models Yukang Chen, Shengju Qian, et al. Link 2023 Language Models Research Paper
63 Are Emergent Abilities of Large Language Models a Mirage? Rylan Schaeffer, Brando Miranda, Sanmi Koyejo Link 2023 Language Models Research Paper
64 Direct Preference Optimization (DPO) Rafael Rafailov, Archit Sharma, et al. Link 2023 Optimization Techniques Research Paper
65 Mamba: Linear-Time Sequence Modeling with Selective State Spaces Albert Gu, Tri Dao Link 2023 Sequence Modeling Research Paper
66 QLoRA: Efficient Finetuning of Quantized LLMs Tim Dettmers, Artidoro Pagnoni, et al. Link 2023 Language Models Research Paper
67 Reflexion: Language Agents with Verbal Reinforcement Learning Noah Shinn, Federico Cassano, et al. Link 2023 Language Models Research Paper
68 Chain-of-Thought Prompting Elicits Reasoning in Large Language Models Jason Wei, Xuezhi Wang, et al. Link 2023 Language Models Research Paper
69 Explainability for Large Language Models: A Survey Haiyan Zhao, Hanjie Chen, et al. Link 2023 Language Models Research Paper
70 Better & Faster Large Language Models Via Multi-token Prediction Fabian Gloeckle, Badr Youbi Idrissi, et al. Link 2024 Language Models Research Paper
71 KAN: Kolmogorov-Arnold Networks Ziming Liu, Yixuan Wang, Sachin Vaidya, et al. Link 2024 Deep Learning Research Paper
72 A Survey of Large Language Models Zhao et al. Link 2024 Language Models Research Paper

πŸ›  Libraries & Frameworks [In-progress]

πŸ”§ Tools & Experimentation Platforms [In-progress]

πŸ“Š Data Sources

Name URL
Kaggle kaggle.com/datasets
UCI Machine Learning Repository archive.ics.uci.edu
Google Dataset Search datasetsearch.research.google.com
Data.gov data.gov
AWS Open Data Registry registry.opendata.aws
Open Data Portal data.gov.uk
World Bank Data data.worldbank.org
European Data Portal data.europa.eu/en
OpenML openml.org
Zenodo zenodo.org
City of New York Open Data opendata.cityofnewyork.us
ImageNet image-net.org
CIFAR-10 cs.toronto.edu/~kriz/cifar.html
Awesome Public Datasets Collection github.com/awesomedata/awesome-public-datasets
Stanford Large Network Dataset Collection snap.stanford.edu/data
Common Crawl commoncrawl.org
Global Health Observatory who.int/data/gho
Huggingface Datasets huggingface.co/datasets

🀝 Communities & Networking [In-progress]

πŸ“° Newsletters & Blogs [In-progress]

πŸŽ™οΈ Podcasts & Video Series [In-progress]

πŸ’Ό Interview Prep [In-progress]

🌐 Channels to Follow

Name URL Channel
AI Explained Link YouTube
Andrej Karpathy Link YouTube
Matt Wolfe Link YouTube
AI Explained Link YouTube
Two Minute Papers Link YouTube
DeepLearningAI Link YouTube
The AI Advantage Link YouTube
MattVidPro AI Link YouTube
Siraj Raval Link YouTube
StatQuest with Josh Starmer Link YouTube
Krish Naik Link YouTube
Simplilearn Link YouTube
freeCodeCamp.org Link YouTube
edureka! Link YouTube
Corey Schafer Link YouTube
sentdex Link YouTube
Yannic Kilcher Link YouTube
Machine Learning Street Talk Link YouTube
Lex Fridman Link YouTube
bycloud Link YouTube
Neptune AI Link YouTube
MIT HAN Lab Link YouTube
3Blue1Brown Link YouTube
Kaggle Link YouTube
OpenAI Link YouTube
TheAIGRID Link YouTube
IBM Technology Link YouTube
Shaw Talebi Link YouTube
codebasics Link YouTube
Sam Witteveen Link YouTube
Chris Hay Link YouTube
Wes Roth Link YouTube
This Day in AI Podcast Link YouTube
No Priors: AI, Machine Learning, Tech, & Startups Link YouTube
Discover AI Link YouTube
hu-po Link YouTube
OpenAI Link Twitter
DeepMind Link Twitter
Andrew Ng Link Twitter
Yann LeCun Link Twitter
Demis Hassabis Link Twitter
Lex Fridman Link Twitter
Google AI Link Twitter
Towards Data Science Link Twitter
Ian Goodfellow Link Twitter
Fei-Fei Li Link Twitter
Andrej Karpathy Link Twitter
Francois Chollet Link Twitter
Jeff Dean Link Twitter
Geoffrey Hinton Link Twitter
Timnit Gebru Link Twitter
Sebastian Thrun Link Twitter
Anima Anandkumar Link Twitter
AI Now Institute Link Twitter
NVIDIA AI Link Twitter
Microsoft Research Link Twitter
IBM Research Link Twitter
The Gradient Link Twitter
EleutherAI Link Twitter
Fast.ai Link Twitter
Hugging Face Link Twitter
KDNuggets Link Twitter
Google Research Link Twitter
Arxiv Link Twitter
Arxiv Blog Link Twitter
Rachel Thomas Link Twitter
MLOps Community Link Twitter
Machine Learning Mastery Link Twitter
DeepLearning.AI Link Twitter
Sebastian Ruder Link Twitter
AK Link Twitter
Stanford AI Lab Link Twitter
Stanford NLP Group Link Twitter
Mustafa Suleyman Link Twitter
François Chollet Link Twitter

About

everything-ai is your essential resource for delving into AI and Generative AI. This curated collection includes courses πŸŽ“, certifications πŸ“œ, books πŸ“š, libraries πŸ› , and research papers πŸ”¬, along with tools πŸ”§, datasets πŸ“Š, and networking 🀝 opportunities.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published