Skip to content

Implementing Randomly Wired Neural Networks for Image Recognition, Using CIFAR-10 dataset, CIFAR-100 dataset

License

Notifications You must be signed in to change notification settings

leaderj1001/RandWireNN

Repository files navigation

Randomly Wired Neural Network

  • Implement Exploring Randomly Wired Neural Networks for Image Recognition :)

PWC Datasets Datasets

Experiments

Datasets Model Accuracy Epoch Training Time Model Parameters
CIFAR-10 RandWireNN(4, 0.75), c=78 93.61% 77 3h 50m 4.75M
CIFAR-10 RandWireNN(4, 0.75), c=109 94.03% 62 3h 50m 8.93M
CIFAR-10 RandWireNN(4, 0.75), c=154 94.23% 94 8h 40m 17.31M
CIFAR-100 RandWireNN(4, 0.75), c=78 73.63% 97 4h 46m 4.87M
CIFAR-100 RandWireNN(4, 0.75), c=109 75.00% 99 6h 9m 9.04M
CIFAR-100 RandWireNN(4, 0.75), c=154 75.42% 99 9h 32m 17.43M
IMAGENET WORK IN PROGRESS WORK IN PROGRESS

Update (2019.05.06)

  1. Visualize weights
  2. Add directory of Drop Connection regularization RandWireNN

Update (2019.04.20)

  1. I added graphing functions for train accuracy, test accuracy, and train loss.
  2. I have added a part to report learning time and accuracy. Reporting of the above results can be seen in the reporting folder.

Todo

  • Experiment with Imagenet dataset.
  • To implement Optimzier like the paper.

Plot

CIFAR-10

epoch_acc_plot

CIFAR-100

epoch_acc_plot_75퍼_CIFAR100

Visualize layer

img

  • As each Epoch passes, we can see that the feature map is formed around the object.

Run

python main.py
  • If you want to change hyper-parameters, you can check "python main.py --help"

Options:

  • --epochs (int) - number of epochs, (default: 100).
  • --p (float) - graph probability, (default: 0.75).
  • --c (int) - channel count for each node, (example: 78, 109, 154), (default: 78).
  • --k (int) - each node is connected to k nearest neighbors in ring topology, (default: 4).
  • --m (int) - number of edges to attach from a new node to existing nodes, (default: 5).
  • --graph-mode (str) - kinds of random graph, (exampple: ER, WS, BA), (default: WS).
  • --node-num (int) - number of graph node (default n=32).
  • --learning-rate (float) - learning rate, (default: 1e-1).
  • --model-mode (str) - which network you use, (example: CIFAR10, CIFAR100, SMALL_REGIME, REGULAR_REGIME), (default: CIFAR10).
  • --batch-size (int) - batch size, (default: 100).
  • --dataset-mode (str) - which dataset you use, (example: CIFAR10, CIFAR100, MNIST), (default: CIFAR10).
  • --is-train (bool) - True if training, False if test. (default: True).
  • --load-model (bool) - (default: False).

Test

python test.py
  • Put the saved model file in the checkpoint folder and saved graph file in the saved_graph folder and type "python test.py".
  • If you want to change hyper-parameters, you can check "python test.py --help"
  • The model file currently in the checkpoint folder is a model with an accuracy of 92.70%.

Options:

  • --p (float) - graph probability, (default: 0.75).
  • --c (int) - channel count for each node, (example: 78, 109, 154), (default: 78).
  • --k (int) - each node is connected to k nearest neighbors in ring topology, (default: 4).
  • --m (int) - number of edges to attach from a new node to existing nodes, (default: 5).
  • --graph-mode (str) - kinds of random graph, (exampple: ER, WS, BA), (default: WS).
  • --node-num (int) - number of graph node (default n=32).
  • --model-mode (str) - which network you use, (example: CIFAR10, CIFAR100, SMALL_REGIME, REGULAR_REGIME), (default: CIFAR10).
  • --batch-size (int) - batch size, (default: 100).
  • --dataset-mode (str) - which dataset you use, (example: CIFAR10, CIFAR100, MNIST), (default: CIFAR10).
  • --is-train (bool) - True if training, False if test. (default: False).

Reference

Methods

  • Erdos-Renyi (ER) Graph, Watts-Strogatz (WS) Graph and Barabasi-Albert (BA) Graph are all available.
  • If you want to visualize the network connection, you can follow the jupyter notebook in visualize_graph directory.
  • Label smoothing.
    • In CIFAR-10, The accuracy was 92.00%.
    • But, CIFAR-100, I have seen improvements in CIFAR-100.

Version

  • Windows 10, Pycharm community...
  • Python 3.7
  • Cuda 9.2
  • Cudnn 7.1.4
  • pytorch 1.0.1
  • networkx 2.2
  • torchviz 0.0.1
  • graphviz 0.10.1
  • tqdm 4.31.1
  • conda install cairo(If you want to visualize the network, it is a required module.)

Network Image

Small Network Image

  • It is a picture of the sample small network in the visualize_graph directory.
  • When I draw the contents of "Exploring Randomly Wired Neural Networks for Image Recognition" on the network, too many nodes are created. So I tried to draw a small network for visualization.
    • Number of nodes: 7
    • Graph parameters(probability P): 0.4
    • Random seed: 12
    • In_channels: 2
    • Out_channels: 2
  • The following figure is a simple example, and the basic RandWired NeuralNetwork Module is provided.

Example of Network

image

About

Implementing Randomly Wired Neural Networks for Image Recognition, Using CIFAR-10 dataset, CIFAR-100 dataset

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published