Skip to content

YOLOXとByteTrackを用いたMOT(Multiple Object Tracking)のPythonサンプル

License

Notifications You must be signed in to change notification settings

montagne5641/yolox-bytetrack-sample

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

yolox-bytetrack-sample

YOLOXByteTrackを用いたMOT(Multiple Object Tracking)のPythonサンプルです。
YOLOXはYOLOX-ONNX-TFLite-Sampleで、ONNXに変換したモデルを使用しています。

08-01.yolox-bytetrack.mp4

Requirement

  • OpenCV 3.4.2 or later
  • onnxruntime 1.5.2 or later
  • lap 0.4.0 or later
  • Cython 0.29.27 or later
  • cython_bbox 0.1.3 or later

※onnxruntime-gpuはonnxruntimeでも動作しますが、推論時間がかかるためGPUを推奨します
※Windowsでcython_bbox のインストールが失敗する場合は、GitHubからのインストールをお試しください(2022/02/13時点)

pip install -e git+https://github.com/samson-wang/cython_bbox.git#egg=cython-bbox

Demo

デモの実行方法は以下です。

python sample.py
  • --device
    カメラデバイス番号の指定
    デフォルト:0
  • --movie
    動画ファイルの指定 ※指定時はカメラデバイスより優先
    デフォルト:指定なし
  • --width
    カメラキャプチャ時の横幅
    デフォルト:960
  • --height
    カメラキャプチャ時の縦幅
    デフォルト:540
YOLOXパラメータ
  • --yolox_model
    ロードするモデルの格納パス
    デフォルト:model/yolox_nano.onnx
  • --input_shape
    モデルの入力サイズ
    デフォルト:416,416
  • --score_th
    クラス判別の閾値
    デフォルト:0.3
  • --nms_th
    NMSの閾値
    デフォルト:0.45
  • --nms_score_th
    NMSのスコア閾値
    デフォルト:0.1
  • --with_p6
    Large P6モデルを使用するか否か
    デフォルト:指定なし
ByteTrackパラメータ
  • --track_thresh
    デフォルト:0.5
  • --track_buffer
    デフォルト:30
  • --match_thresh
    デフォルト:0.8
  • --min_box_area
    デフォルト:10
  • --mot20
    デフォルト:指定なし

※パラメータ詳細はByteTrackを参照ください。

Reference

Author

高橋かずひと(https://twitter.com/KzhtTkhs)

License

yolox-bytetrack-sample is under MIT License.

License(Movie)

サンプル動画はNHKクリエイティブ・ライブラリーケニア共和国キツイ 町並み(4) ふかんショットを使用しています。

About

YOLOXとByteTrackを用いたMOT(Multiple Object Tracking)のPythonサンプル

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%