Skip to content

Commit

Permalink
Escape backslashes in docstrings
Browse files Browse the repository at this point in the history
  • Loading branch information
gaurav-arya committed Apr 27, 2024
1 parent 618dbbb commit ee620e4
Showing 1 changed file with 4 additions and 4 deletions.
8 changes: 4 additions & 4 deletions src/rules.jl
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ backward(method::BFFG, k, q::Leaf; kargs...) = backward(method, k, q[]; kargs...
backward(::BFFG, k::Union{AffineGaussianKernel,LinearGaussianKernel}, q::WGaussian{(:F,:Γ,:c)};
For a Markov kernel `k` of the form `x ↦ N(Bx + β, Q)` this function computes
`x ↦ k q = ∫ q(y) pdf(N(Bx + β, Q), y) dy` in the form `q0(y) = exp(c0)⋅pdf(N(Γ0\F0, inv(Γ0)), y)`.
`x ↦ k q = ∫ q(y) pdf(N(Bx + β, Q), y) dy` in the form `q0(y) = exp(c0)⋅pdf(N(Γ0 \\ F0, inv(Γ0)), y)`.
Requires invertibility of `Γ`.
Expand All @@ -65,7 +65,7 @@ Returns a message objects for forward guiding and `q0`.
Arguments:
* `k` a kernel such that `Y ~ N(B*x + β, Q)`
* `q::WGaussian{(:F,:Γ,:c)}` is the (unnormalized) density q(y) = exp(c)⋅pdf(N(Γ\F, inv(Γ)), y)`
* `q::WGaussian{(:F,:Γ,:c)}` is the (unnormalized) density q(y) = exp(c)⋅pdf(N(Γ \\ F, inv(Γ)), y)`
"""
function backward(::BFFG, k::Union{AffineGaussianKernel,LinearGaussianKernel}, q::WGaussian{(:F,:Γ,:c)}; unfused=false)
@unpack F, Γ, c = q
Expand All @@ -90,7 +90,7 @@ end
backward(::BFFG, k::Union{AffineGaussianKernel,LinearGaussianKernel}, y; unfused=false)
For a Markov kernel `k` of the form `x ↦ N(Bx + β, Q)` this function computes the function
`x ↦ pdf(N(Bx + β, Q), y)` and returns it as a `WGaussian` in the form exp(c0)⋅pdf(N(Γ0\F0, inv(Γ0)), y)`
`x ↦ pdf(N(Bx + β, Q), y)` and returns it as a `WGaussian` in the form exp(c0)⋅pdf(N(Γ0 \\ F0, inv(Γ0)), y)`
wrapped in a `Leaf` object.
If `unfused=true` avoid a call to `logdet(B)`. This function is supposed to be called with observations
Expand Down Expand Up @@ -228,7 +228,7 @@ end
backward(::BFFG, ::Copy, a::Union{Leaf{<:WGaussian{(:F,:Γ,:c)}}, WGaussian{(:F,:Γ,:c)}}, args...)
For a Markov kernel `k::Copy` that represents the deterministic function `x ↦ Dirac((x, ..., x))`
this function computes the corresponding pullback `k(h1, ..., hn) = h1(x)⋅...⋅hn(x)` and returns it as a `WGaussian` in the form exp(c0)⋅pdf(N(Γ0\F0, inv(Γ0)), y)`.
this function computes the corresponding pullback `k(h1, ..., hn) = h1(x)⋅...⋅hn(x)` and returns it as a `WGaussian` in the form exp(c0)⋅pdf(N(Γ0 \\ F0, inv(Γ0)), y)`.
From a Bayesian perspective, this performs *fusion* of the information about a value `x` given in form
of a tuple of unormalizes densities. If an argument is wrapped in a `Leaf` object, do the right thing.
Expand Down

0 comments on commit ee620e4

Please sign in to comment.